Step |
Hyp |
Ref |
Expression |
1 |
|
dvheveccl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvheveccl.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
3 |
|
dvheveccl.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dvheveccl.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dvheveccl.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
6 |
|
dvheveccl.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
7 |
|
dvheveccl.e |
⊢ 𝐸 = 〈 ( I ↾ 𝐵 ) , ( I ↾ 𝑇 ) 〉 |
8 |
|
dvheveccl.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
2 1 3
|
idltrn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝐵 ) ∈ 𝑇 ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ( I ↾ 𝐵 ) ∈ 𝑇 ) |
11 |
|
eqid |
⊢ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
1 3 11
|
tendoidcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
13 |
8 12
|
syl |
⊢ ( 𝜑 → ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
14 |
1 3 11 4 5
|
dvhelvbasei |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( I ↾ 𝐵 ) ∈ 𝑇 ∧ ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 〈 ( I ↾ 𝐵 ) , ( I ↾ 𝑇 ) 〉 ∈ 𝑉 ) |
15 |
8 10 13 14
|
syl12anc |
⊢ ( 𝜑 → 〈 ( I ↾ 𝐵 ) , ( I ↾ 𝑇 ) 〉 ∈ 𝑉 ) |
16 |
|
eqid |
⊢ ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
17 |
2 1 3 11 16
|
tendo1ne0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ≠ ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) ) |
18 |
8 17
|
syl |
⊢ ( 𝜑 → ( I ↾ 𝑇 ) ≠ ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) ) |
19 |
2 1 3 4 6 16
|
dvh0g |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 0 = 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) 〉 ) |
20 |
8 19
|
syl |
⊢ ( 𝜑 → 0 = 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) 〉 ) |
21 |
|
eqtr |
⊢ ( ( 〈 ( I ↾ 𝐵 ) , ( I ↾ 𝑇 ) 〉 = 0 ∧ 0 = 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) 〉 ) → 〈 ( I ↾ 𝐵 ) , ( I ↾ 𝑇 ) 〉 = 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) 〉 ) |
22 |
|
opthg |
⊢ ( ( ( I ↾ 𝐵 ) ∈ 𝑇 ∧ ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 〈 ( I ↾ 𝐵 ) , ( I ↾ 𝑇 ) 〉 = 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) 〉 ↔ ( ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) ∧ ( I ↾ 𝑇 ) = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) ) ) ) |
23 |
10 13 22
|
syl2anc |
⊢ ( 𝜑 → ( 〈 ( I ↾ 𝐵 ) , ( I ↾ 𝑇 ) 〉 = 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) 〉 ↔ ( ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) ∧ ( I ↾ 𝑇 ) = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) ) ) ) |
24 |
|
simpr |
⊢ ( ( ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) ∧ ( I ↾ 𝑇 ) = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) ) → ( I ↾ 𝑇 ) = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) ) |
25 |
23 24
|
syl6bi |
⊢ ( 𝜑 → ( 〈 ( I ↾ 𝐵 ) , ( I ↾ 𝑇 ) 〉 = 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) 〉 → ( I ↾ 𝑇 ) = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) ) ) |
26 |
21 25
|
syl5 |
⊢ ( 𝜑 → ( ( 〈 ( I ↾ 𝐵 ) , ( I ↾ 𝑇 ) 〉 = 0 ∧ 0 = 〈 ( I ↾ 𝐵 ) , ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) 〉 ) → ( I ↾ 𝑇 ) = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) ) ) |
27 |
20 26
|
mpan2d |
⊢ ( 𝜑 → ( 〈 ( I ↾ 𝐵 ) , ( I ↾ 𝑇 ) 〉 = 0 → ( I ↾ 𝑇 ) = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) ) ) |
28 |
27
|
necon3d |
⊢ ( 𝜑 → ( ( I ↾ 𝑇 ) ≠ ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) → 〈 ( I ↾ 𝐵 ) , ( I ↾ 𝑇 ) 〉 ≠ 0 ) ) |
29 |
18 28
|
mpd |
⊢ ( 𝜑 → 〈 ( I ↾ 𝐵 ) , ( I ↾ 𝑇 ) 〉 ≠ 0 ) |
30 |
|
eldifsn |
⊢ ( 〈 ( I ↾ 𝐵 ) , ( I ↾ 𝑇 ) 〉 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 〈 ( I ↾ 𝐵 ) , ( I ↾ 𝑇 ) 〉 ∈ 𝑉 ∧ 〈 ( I ↾ 𝐵 ) , ( I ↾ 𝑇 ) 〉 ≠ 0 ) ) |
31 |
15 29 30
|
sylanbrc |
⊢ ( 𝜑 → 〈 ( I ↾ 𝐵 ) , ( I ↾ 𝑇 ) 〉 ∈ ( 𝑉 ∖ { 0 } ) ) |
32 |
7 31
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝑉 ∖ { 0 } ) ) |