Step |
Hyp |
Ref |
Expression |
1 |
|
dvhvbase.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvhvbase.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dvhvbase.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dvhvbase.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dvhvbase.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
6 |
|
opelxpi |
⊢ ( ( 𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸 ) → 〈 𝐹 , 𝑆 〉 ∈ ( 𝑇 × 𝐸 ) ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸 ) ) → 〈 𝐹 , 𝑆 〉 ∈ ( 𝑇 × 𝐸 ) ) |
8 |
1 2 3 4 5
|
dvhvbase |
⊢ ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) → 𝑉 = ( 𝑇 × 𝐸 ) ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸 ) ) → 𝑉 = ( 𝑇 × 𝐸 ) ) |
10 |
7 9
|
eleqtrrd |
⊢ ( ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑆 ∈ 𝐸 ) ) → 〈 𝐹 , 𝑆 〉 ∈ 𝑉 ) |