Metamath Proof Explorer


Theorem dvhvbase

Description: The vectors (vector base set) of the constructed full vector space H are all translations (for a fiducial co-atom W ). (Contributed by NM, 2-Nov-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvhvbase.h 𝐻 = ( LHyp ‘ 𝐾 )
dvhvbase.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dvhvbase.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dvhvbase.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dvhvbase.v 𝑉 = ( Base ‘ 𝑈 )
Assertion dvhvbase ( ( 𝐾𝑋𝑊𝐻 ) → 𝑉 = ( 𝑇 × 𝐸 ) )

Proof

Step Hyp Ref Expression
1 dvhvbase.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvhvbase.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 dvhvbase.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 dvhvbase.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 dvhvbase.v 𝑉 = ( Base ‘ 𝑈 )
6 eqid ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
7 1 2 3 6 4 dvhset ( ( 𝐾𝑋𝑊𝐻 ) → 𝑈 = ( { ⟨ ( Base ‘ ndx ) , ( 𝑇 × 𝐸 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( 𝑇 ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) )
8 7 fveq2d ( ( 𝐾𝑋𝑊𝐻 ) → ( Base ‘ 𝑈 ) = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , ( 𝑇 × 𝐸 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( 𝑇 ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) ) )
9 2 fvexi 𝑇 ∈ V
10 3 fvexi 𝐸 ∈ V
11 9 10 xpex ( 𝑇 × 𝐸 ) ∈ V
12 eqid ( { ⟨ ( Base ‘ ndx ) , ( 𝑇 × 𝐸 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( 𝑇 ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , ( 𝑇 × 𝐸 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( 𝑇 ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } )
13 12 lmodbase ( ( 𝑇 × 𝐸 ) ∈ V → ( 𝑇 × 𝐸 ) = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , ( 𝑇 × 𝐸 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( 𝑇 ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) ) )
14 11 13 ax-mp ( 𝑇 × 𝐸 ) = ( Base ‘ ( { ⟨ ( Base ‘ ndx ) , ( 𝑇 × 𝐸 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( 𝑇 ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) )
15 8 5 14 3eqtr4g ( ( 𝐾𝑋𝑊𝐻 ) → 𝑉 = ( 𝑇 × 𝐸 ) )