| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvhset.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dvhset.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dvhset.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dvhset.d |
⊢ 𝐷 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
dvhset.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
1
|
dvhfset |
⊢ ( 𝐾 ∈ 𝑋 → ( DVecH ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) ) ) |
| 7 |
6
|
fveq1d |
⊢ ( 𝐾 ∈ 𝑋 → ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( 𝑤 ∈ 𝐻 ↦ ( { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) ) ‘ 𝑊 ) ) |
| 8 |
5 7
|
eqtrid |
⊢ ( 𝐾 ∈ 𝑋 → 𝑈 = ( ( 𝑤 ∈ 𝐻 ↦ ( { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) ) ‘ 𝑊 ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 10 |
9 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) = 𝑇 ) |
| 11 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 12 |
11 3
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) = 𝐸 ) |
| 13 |
10 12
|
xpeq12d |
⊢ ( 𝑤 = 𝑊 → ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) = ( 𝑇 × 𝐸 ) ) |
| 14 |
13
|
opeq2d |
⊢ ( 𝑤 = 𝑊 → 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 = 〈 ( Base ‘ ndx ) , ( 𝑇 × 𝐸 ) 〉 ) |
| 15 |
10
|
mpteq1d |
⊢ ( 𝑤 = 𝑊 → ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) = ( ℎ ∈ 𝑇 ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) ) |
| 16 |
15
|
opeq2d |
⊢ ( 𝑤 = 𝑊 → 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 = 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ 𝑇 ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) |
| 17 |
13 13 16
|
mpoeq123dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) = ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ 𝑇 ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) ) |
| 18 |
17
|
opeq2d |
⊢ ( 𝑤 = 𝑊 → 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 = 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ 𝑇 ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 ) |
| 19 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 20 |
19 4
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) = 𝐷 ) |
| 21 |
20
|
opeq2d |
⊢ ( 𝑤 = 𝑊 → 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 = 〈 ( Scalar ‘ ndx ) , 𝐷 〉 ) |
| 22 |
14 18 21
|
tpeq123d |
⊢ ( 𝑤 = 𝑊 → { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } = { 〈 ( Base ‘ ndx ) , ( 𝑇 × 𝐸 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ 𝑇 ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝐷 〉 } ) |
| 23 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 = 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) |
| 24 |
12 13 23
|
mpoeq123dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) = ( 𝑠 ∈ 𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) ) |
| 25 |
24
|
opeq2d |
⊢ ( 𝑤 = 𝑊 → 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 = 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 ) |
| 26 |
25
|
sneqd |
⊢ ( 𝑤 = 𝑊 → { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } = { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) |
| 27 |
22 26
|
uneq12d |
⊢ ( 𝑤 = 𝑊 → ( { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , ( 𝑇 × 𝐸 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ 𝑇 ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) ) |
| 28 |
|
eqid |
⊢ ( 𝑤 ∈ 𝐻 ↦ ( { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) ) = ( 𝑤 ∈ 𝐻 ↦ ( { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) ) |
| 29 |
|
tpex |
⊢ { 〈 ( Base ‘ ndx ) , ( 𝑇 × 𝐸 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ 𝑇 ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝐷 〉 } ∈ V |
| 30 |
|
snex |
⊢ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ∈ V |
| 31 |
29 30
|
unex |
⊢ ( { 〈 ( Base ‘ ndx ) , ( 𝑇 × 𝐸 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ 𝑇 ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) ∈ V |
| 32 |
27 28 31
|
fvmpt |
⊢ ( 𝑊 ∈ 𝐻 → ( ( 𝑤 ∈ 𝐻 ↦ ( { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) ) ‘ 𝑊 ) = ( { 〈 ( Base ‘ ndx ) , ( 𝑇 × 𝐸 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ 𝑇 ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) ) |
| 33 |
8 32
|
sylan9eq |
⊢ ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) → 𝑈 = ( { 〈 ( Base ‘ ndx ) , ( 𝑇 × 𝐸 ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ 𝑇 ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ 𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) ) |