Metamath Proof Explorer


Theorem dvhset

Description: The constructed full vector space H for a lattice K . (Contributed by NM, 17-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvhset.h 𝐻 = ( LHyp ‘ 𝐾 )
dvhset.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dvhset.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dvhset.d 𝐷 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
dvhset.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
Assertion dvhset ( ( 𝐾𝑋𝑊𝐻 ) → 𝑈 = ( { ⟨ ( Base ‘ ndx ) , ( 𝑇 × 𝐸 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( 𝑇 ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐷 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) )

Proof

Step Hyp Ref Expression
1 dvhset.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvhset.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 dvhset.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 dvhset.d 𝐷 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
5 dvhset.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
6 1 dvhfset ( 𝐾𝑋 → ( DVecH ‘ 𝐾 ) = ( 𝑤𝐻 ↦ ( { ⟨ ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) ) )
7 6 fveq1d ( 𝐾𝑋 → ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( 𝑤𝐻 ↦ ( { ⟨ ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) ) ‘ 𝑊 ) )
8 5 7 syl5eq ( 𝐾𝑋𝑈 = ( ( 𝑤𝐻 ↦ ( { ⟨ ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) ) ‘ 𝑊 ) )
9 fveq2 ( 𝑤 = 𝑊 → ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
10 9 2 eqtr4di ( 𝑤 = 𝑊 → ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) = 𝑇 )
11 fveq2 ( 𝑤 = 𝑊 → ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) )
12 11 3 eqtr4di ( 𝑤 = 𝑊 → ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) = 𝐸 )
13 10 12 xpeq12d ( 𝑤 = 𝑊 → ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) = ( 𝑇 × 𝐸 ) )
14 13 opeq2d ( 𝑤 = 𝑊 → ⟨ ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ⟩ = ⟨ ( Base ‘ ndx ) , ( 𝑇 × 𝐸 ) ⟩ )
15 10 mpteq1d ( 𝑤 = 𝑊 → ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) = ( 𝑇 ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) )
16 15 opeq2d ( 𝑤 = 𝑊 → ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ = ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( 𝑇 ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ )
17 13 13 16 mpoeq123dv ( 𝑤 = 𝑊 → ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) = ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( 𝑇 ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) )
18 17 opeq2d ( 𝑤 = 𝑊 → ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ = ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( 𝑇 ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ )
19 fveq2 ( 𝑤 = 𝑊 → ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
20 19 4 eqtr4di ( 𝑤 = 𝑊 → ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) = 𝐷 )
21 20 opeq2d ( 𝑤 = 𝑊 → ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) ⟩ = ⟨ ( Scalar ‘ ndx ) , 𝐷 ⟩ )
22 14 18 21 tpeq123d ( 𝑤 = 𝑊 → { ⟨ ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) ⟩ } = { ⟨ ( Base ‘ ndx ) , ( 𝑇 × 𝐸 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( 𝑇 ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐷 ⟩ } )
23 eqidd ( 𝑤 = 𝑊 → ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ = ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ )
24 12 13 23 mpoeq123dv ( 𝑤 = 𝑊 → ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) = ( 𝑠𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) )
25 24 opeq2d ( 𝑤 = 𝑊 → ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ = ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ )
26 25 sneqd ( 𝑤 = 𝑊 → { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } = { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } )
27 22 26 uneq12d ( 𝑤 = 𝑊 → ( { ⟨ ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , ( 𝑇 × 𝐸 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( 𝑇 ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐷 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) )
28 eqid ( 𝑤𝐻 ↦ ( { ⟨ ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) ) = ( 𝑤𝐻 ↦ ( { ⟨ ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) )
29 tpex { ⟨ ( Base ‘ ndx ) , ( 𝑇 × 𝐸 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( 𝑇 ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐷 ⟩ } ∈ V
30 snex { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ∈ V
31 29 30 unex ( { ⟨ ( Base ‘ ndx ) , ( 𝑇 × 𝐸 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( 𝑇 ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐷 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) ∈ V
32 27 28 31 fvmpt ( 𝑊𝐻 → ( ( 𝑤𝐻 ↦ ( { ⟨ ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) ) ‘ 𝑊 ) = ( { ⟨ ( Base ‘ ndx ) , ( 𝑇 × 𝐸 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( 𝑇 ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐷 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) )
33 8 32 sylan9eq ( ( 𝐾𝑋𝑊𝐻 ) → 𝑈 = ( { ⟨ ( Base ‘ ndx ) , ( 𝑇 × 𝐸 ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( 𝑇 ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐷 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠𝐸 , 𝑓 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) )