Step |
Hyp |
Ref |
Expression |
1 |
|
dvhset.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
elex |
⊢ ( 𝐾 ∈ 𝑉 → 𝐾 ∈ V ) |
3 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = ( LHyp ‘ 𝐾 ) ) |
4 |
3 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = 𝐻 ) |
5 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( LTrn ‘ 𝑘 ) = ( LTrn ‘ 𝐾 ) ) |
6 |
5
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) |
7 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( TEndo ‘ 𝑘 ) = ( TEndo ‘ 𝐾 ) ) |
8 |
7
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) |
9 |
6 8
|
xpeq12d |
⊢ ( 𝑘 = 𝐾 → ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) = ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ) |
10 |
9
|
opeq2d |
⊢ ( 𝑘 = 𝐾 → 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) 〉 = 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 ) |
11 |
6
|
mpteq1d |
⊢ ( 𝑘 = 𝐾 → ( ℎ ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) = ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) ) |
12 |
11
|
opeq2d |
⊢ ( 𝑘 = 𝐾 → 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 = 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) |
13 |
9 9 12
|
mpoeq123dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑓 ∈ ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) = ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) ) |
14 |
13
|
opeq2d |
⊢ ( 𝑘 = 𝐾 → 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 = 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 ) |
15 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( EDRing ‘ 𝑘 ) = ( EDRing ‘ 𝐾 ) ) |
16 |
15
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) ) |
17 |
16
|
opeq2d |
⊢ ( 𝑘 = 𝐾 → 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) 〉 = 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 ) |
18 |
10 14 17
|
tpeq123d |
⊢ ( 𝑘 = 𝐾 → { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) 〉 } = { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ) |
19 |
|
eqidd |
⊢ ( 𝑘 = 𝐾 → 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 = 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) |
20 |
8 9 19
|
mpoeq123dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) = ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) ) |
21 |
20
|
opeq2d |
⊢ ( 𝑘 = 𝐾 → 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 = 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 ) |
22 |
21
|
sneqd |
⊢ ( 𝑘 = 𝐾 → { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } = { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) |
23 |
18 22
|
uneq12d |
⊢ ( 𝑘 = 𝐾 → ( { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) ) |
24 |
4 23
|
mpteq12dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) ) = ( 𝑤 ∈ 𝐻 ↦ ( { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) ) ) |
25 |
|
df-dvech |
⊢ DVecH = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝑘 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝑘 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) ) ) |
26 |
24 25 1
|
mptfvmpt |
⊢ ( 𝐾 ∈ V → ( DVecH ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) ) ) |
27 |
2 26
|
syl |
⊢ ( 𝐾 ∈ 𝑉 → ( DVecH ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , ( ( EDRing ‘ 𝐾 ) ‘ 𝑤 ) 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑤 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) ) ) |