Step |
Hyp |
Ref |
Expression |
1 |
|
dvhset.h |
|- H = ( LHyp ` K ) |
2 |
|
elex |
|- ( K e. V -> K e. _V ) |
3 |
|
fveq2 |
|- ( k = K -> ( LHyp ` k ) = ( LHyp ` K ) ) |
4 |
3 1
|
eqtr4di |
|- ( k = K -> ( LHyp ` k ) = H ) |
5 |
|
fveq2 |
|- ( k = K -> ( LTrn ` k ) = ( LTrn ` K ) ) |
6 |
5
|
fveq1d |
|- ( k = K -> ( ( LTrn ` k ) ` w ) = ( ( LTrn ` K ) ` w ) ) |
7 |
|
fveq2 |
|- ( k = K -> ( TEndo ` k ) = ( TEndo ` K ) ) |
8 |
7
|
fveq1d |
|- ( k = K -> ( ( TEndo ` k ) ` w ) = ( ( TEndo ` K ) ` w ) ) |
9 |
6 8
|
xpeq12d |
|- ( k = K -> ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) = ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) ) |
10 |
9
|
opeq2d |
|- ( k = K -> <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. = <. ( Base ` ndx ) , ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) >. ) |
11 |
6
|
mpteq1d |
|- ( k = K -> ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) = ( h e. ( ( LTrn ` K ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) ) |
12 |
11
|
opeq2d |
|- ( k = K -> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. = <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` K ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) |
13 |
9 9 12
|
mpoeq123dv |
|- ( k = K -> ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) = ( f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) , g e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` K ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) ) |
14 |
13
|
opeq2d |
|- ( k = K -> <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. = <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) , g e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` K ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. ) |
15 |
|
fveq2 |
|- ( k = K -> ( EDRing ` k ) = ( EDRing ` K ) ) |
16 |
15
|
fveq1d |
|- ( k = K -> ( ( EDRing ` k ) ` w ) = ( ( EDRing ` K ) ` w ) ) |
17 |
16
|
opeq2d |
|- ( k = K -> <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. = <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. ) |
18 |
10 14 17
|
tpeq123d |
|- ( k = K -> { <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } = { <. ( Base ` ndx ) , ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) , g e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` K ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } ) |
19 |
|
eqidd |
|- ( k = K -> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. = <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) |
20 |
8 9 19
|
mpoeq123dv |
|- ( k = K -> ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) = ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) ) |
21 |
20
|
opeq2d |
|- ( k = K -> <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. = <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. ) |
22 |
21
|
sneqd |
|- ( k = K -> { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } = { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) |
23 |
18 22
|
uneq12d |
|- ( k = K -> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) = ( { <. ( Base ` ndx ) , ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) , g e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` K ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) |
24 |
4 23
|
mpteq12dv |
|- ( k = K -> ( w e. ( LHyp ` k ) |-> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) = ( w e. H |-> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) , g e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` K ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) ) |
25 |
|
df-dvech |
|- DVecH = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) ) |
26 |
24 25 1
|
mptfvmpt |
|- ( K e. _V -> ( DVecH ` K ) = ( w e. H |-> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) , g e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` K ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) ) |
27 |
2 26
|
syl |
|- ( K e. V -> ( DVecH ` K ) = ( w e. H |-> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) , g e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` K ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) ) |