Metamath Proof Explorer


Definition df-dvech

Description: Define constructed full vector space H. (Contributed by NM, 17-Oct-2013)

Ref Expression
Assertion df-dvech
|- DVecH = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdvh
 |-  DVecH
1 vk
 |-  k
2 cvv
 |-  _V
3 vw
 |-  w
4 clh
 |-  LHyp
5 1 cv
 |-  k
6 5 4 cfv
 |-  ( LHyp ` k )
7 cbs
 |-  Base
8 cnx
 |-  ndx
9 8 7 cfv
 |-  ( Base ` ndx )
10 cltrn
 |-  LTrn
11 5 10 cfv
 |-  ( LTrn ` k )
12 3 cv
 |-  w
13 12 11 cfv
 |-  ( ( LTrn ` k ) ` w )
14 ctendo
 |-  TEndo
15 5 14 cfv
 |-  ( TEndo ` k )
16 12 15 cfv
 |-  ( ( TEndo ` k ) ` w )
17 13 16 cxp
 |-  ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) )
18 9 17 cop
 |-  <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >.
19 cplusg
 |-  +g
20 8 19 cfv
 |-  ( +g ` ndx )
21 vf
 |-  f
22 vg
 |-  g
23 c1st
 |-  1st
24 21 cv
 |-  f
25 24 23 cfv
 |-  ( 1st ` f )
26 22 cv
 |-  g
27 26 23 cfv
 |-  ( 1st ` g )
28 25 27 ccom
 |-  ( ( 1st ` f ) o. ( 1st ` g ) )
29 vh
 |-  h
30 c2nd
 |-  2nd
31 24 30 cfv
 |-  ( 2nd ` f )
32 29 cv
 |-  h
33 32 31 cfv
 |-  ( ( 2nd ` f ) ` h )
34 26 30 cfv
 |-  ( 2nd ` g )
35 32 34 cfv
 |-  ( ( 2nd ` g ) ` h )
36 33 35 ccom
 |-  ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) )
37 29 13 36 cmpt
 |-  ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) )
38 28 37 cop
 |-  <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >.
39 21 22 17 17 38 cmpo
 |-  ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. )
40 20 39 cop
 |-  <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >.
41 csca
 |-  Scalar
42 8 41 cfv
 |-  ( Scalar ` ndx )
43 cedring
 |-  EDRing
44 5 43 cfv
 |-  ( EDRing ` k )
45 12 44 cfv
 |-  ( ( EDRing ` k ) ` w )
46 42 45 cop
 |-  <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >.
47 18 40 46 ctp
 |-  { <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. }
48 cvsca
 |-  .s
49 8 48 cfv
 |-  ( .s ` ndx )
50 vs
 |-  s
51 50 cv
 |-  s
52 25 51 cfv
 |-  ( s ` ( 1st ` f ) )
53 51 31 ccom
 |-  ( s o. ( 2nd ` f ) )
54 52 53 cop
 |-  <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >.
55 50 21 16 17 54 cmpo
 |-  ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. )
56 49 55 cop
 |-  <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >.
57 56 csn
 |-  { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. }
58 47 57 cun
 |-  ( { <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } )
59 3 6 58 cmpt
 |-  ( w e. ( LHyp ` k ) |-> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) )
60 1 2 59 cmpt
 |-  ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) )
61 0 60 wceq
 |-  DVecH = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) )