Step |
Hyp |
Ref |
Expression |
0 |
|
cdvh |
|- DVecH |
1 |
|
vk |
|- k |
2 |
|
cvv |
|- _V |
3 |
|
vw |
|- w |
4 |
|
clh |
|- LHyp |
5 |
1
|
cv |
|- k |
6 |
5 4
|
cfv |
|- ( LHyp ` k ) |
7 |
|
cbs |
|- Base |
8 |
|
cnx |
|- ndx |
9 |
8 7
|
cfv |
|- ( Base ` ndx ) |
10 |
|
cltrn |
|- LTrn |
11 |
5 10
|
cfv |
|- ( LTrn ` k ) |
12 |
3
|
cv |
|- w |
13 |
12 11
|
cfv |
|- ( ( LTrn ` k ) ` w ) |
14 |
|
ctendo |
|- TEndo |
15 |
5 14
|
cfv |
|- ( TEndo ` k ) |
16 |
12 15
|
cfv |
|- ( ( TEndo ` k ) ` w ) |
17 |
13 16
|
cxp |
|- ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |
18 |
9 17
|
cop |
|- <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. |
19 |
|
cplusg |
|- +g |
20 |
8 19
|
cfv |
|- ( +g ` ndx ) |
21 |
|
vf |
|- f |
22 |
|
vg |
|- g |
23 |
|
c1st |
|- 1st |
24 |
21
|
cv |
|- f |
25 |
24 23
|
cfv |
|- ( 1st ` f ) |
26 |
22
|
cv |
|- g |
27 |
26 23
|
cfv |
|- ( 1st ` g ) |
28 |
25 27
|
ccom |
|- ( ( 1st ` f ) o. ( 1st ` g ) ) |
29 |
|
vh |
|- h |
30 |
|
c2nd |
|- 2nd |
31 |
24 30
|
cfv |
|- ( 2nd ` f ) |
32 |
29
|
cv |
|- h |
33 |
32 31
|
cfv |
|- ( ( 2nd ` f ) ` h ) |
34 |
26 30
|
cfv |
|- ( 2nd ` g ) |
35 |
32 34
|
cfv |
|- ( ( 2nd ` g ) ` h ) |
36 |
33 35
|
ccom |
|- ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) |
37 |
29 13 36
|
cmpt |
|- ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) |
38 |
28 37
|
cop |
|- <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. |
39 |
21 22 17 17 38
|
cmpo |
|- ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) |
40 |
20 39
|
cop |
|- <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. |
41 |
|
csca |
|- Scalar |
42 |
8 41
|
cfv |
|- ( Scalar ` ndx ) |
43 |
|
cedring |
|- EDRing |
44 |
5 43
|
cfv |
|- ( EDRing ` k ) |
45 |
12 44
|
cfv |
|- ( ( EDRing ` k ) ` w ) |
46 |
42 45
|
cop |
|- <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. |
47 |
18 40 46
|
ctp |
|- { <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } |
48 |
|
cvsca |
|- .s |
49 |
8 48
|
cfv |
|- ( .s ` ndx ) |
50 |
|
vs |
|- s |
51 |
50
|
cv |
|- s |
52 |
25 51
|
cfv |
|- ( s ` ( 1st ` f ) ) |
53 |
51 31
|
ccom |
|- ( s o. ( 2nd ` f ) ) |
54 |
52 53
|
cop |
|- <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. |
55 |
50 21 16 17 54
|
cmpo |
|- ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) |
56 |
49 55
|
cop |
|- <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. |
57 |
56
|
csn |
|- { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } |
58 |
47 57
|
cun |
|- ( { <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) |
59 |
3 6 58
|
cmpt |
|- ( w e. ( LHyp ` k ) |-> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) |
60 |
1 2 59
|
cmpt |
|- ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) ) |
61 |
0 60
|
wceq |
|- DVecH = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) ) |