| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cdvh |  |-  DVecH | 
						
							| 1 |  | vk |  |-  k | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vw |  |-  w | 
						
							| 4 |  | clh |  |-  LHyp | 
						
							| 5 | 1 | cv |  |-  k | 
						
							| 6 | 5 4 | cfv |  |-  ( LHyp ` k ) | 
						
							| 7 |  | cbs |  |-  Base | 
						
							| 8 |  | cnx |  |-  ndx | 
						
							| 9 | 8 7 | cfv |  |-  ( Base ` ndx ) | 
						
							| 10 |  | cltrn |  |-  LTrn | 
						
							| 11 | 5 10 | cfv |  |-  ( LTrn ` k ) | 
						
							| 12 | 3 | cv |  |-  w | 
						
							| 13 | 12 11 | cfv |  |-  ( ( LTrn ` k ) ` w ) | 
						
							| 14 |  | ctendo |  |-  TEndo | 
						
							| 15 | 5 14 | cfv |  |-  ( TEndo ` k ) | 
						
							| 16 | 12 15 | cfv |  |-  ( ( TEndo ` k ) ` w ) | 
						
							| 17 | 13 16 | cxp |  |-  ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) | 
						
							| 18 | 9 17 | cop |  |-  <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. | 
						
							| 19 |  | cplusg |  |-  +g | 
						
							| 20 | 8 19 | cfv |  |-  ( +g ` ndx ) | 
						
							| 21 |  | vf |  |-  f | 
						
							| 22 |  | vg |  |-  g | 
						
							| 23 |  | c1st |  |-  1st | 
						
							| 24 | 21 | cv |  |-  f | 
						
							| 25 | 24 23 | cfv |  |-  ( 1st ` f ) | 
						
							| 26 | 22 | cv |  |-  g | 
						
							| 27 | 26 23 | cfv |  |-  ( 1st ` g ) | 
						
							| 28 | 25 27 | ccom |  |-  ( ( 1st ` f ) o. ( 1st ` g ) ) | 
						
							| 29 |  | vh |  |-  h | 
						
							| 30 |  | c2nd |  |-  2nd | 
						
							| 31 | 24 30 | cfv |  |-  ( 2nd ` f ) | 
						
							| 32 | 29 | cv |  |-  h | 
						
							| 33 | 32 31 | cfv |  |-  ( ( 2nd ` f ) ` h ) | 
						
							| 34 | 26 30 | cfv |  |-  ( 2nd ` g ) | 
						
							| 35 | 32 34 | cfv |  |-  ( ( 2nd ` g ) ` h ) | 
						
							| 36 | 33 35 | ccom |  |-  ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) | 
						
							| 37 | 29 13 36 | cmpt |  |-  ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) | 
						
							| 38 | 28 37 | cop |  |-  <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. | 
						
							| 39 | 21 22 17 17 38 | cmpo |  |-  ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) | 
						
							| 40 | 20 39 | cop |  |-  <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. | 
						
							| 41 |  | csca |  |-  Scalar | 
						
							| 42 | 8 41 | cfv |  |-  ( Scalar ` ndx ) | 
						
							| 43 |  | cedring |  |-  EDRing | 
						
							| 44 | 5 43 | cfv |  |-  ( EDRing ` k ) | 
						
							| 45 | 12 44 | cfv |  |-  ( ( EDRing ` k ) ` w ) | 
						
							| 46 | 42 45 | cop |  |-  <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. | 
						
							| 47 | 18 40 46 | ctp |  |-  { <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } | 
						
							| 48 |  | cvsca |  |-  .s | 
						
							| 49 | 8 48 | cfv |  |-  ( .s ` ndx ) | 
						
							| 50 |  | vs |  |-  s | 
						
							| 51 | 50 | cv |  |-  s | 
						
							| 52 | 25 51 | cfv |  |-  ( s ` ( 1st ` f ) ) | 
						
							| 53 | 51 31 | ccom |  |-  ( s o. ( 2nd ` f ) ) | 
						
							| 54 | 52 53 | cop |  |-  <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. | 
						
							| 55 | 50 21 16 17 54 | cmpo |  |-  ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) | 
						
							| 56 | 49 55 | cop |  |-  <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. | 
						
							| 57 | 56 | csn |  |-  { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } | 
						
							| 58 | 47 57 | cun |  |-  ( { <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) | 
						
							| 59 | 3 6 58 | cmpt |  |-  ( w e. ( LHyp ` k ) |-> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) | 
						
							| 60 | 1 2 59 | cmpt |  |-  ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) ) | 
						
							| 61 | 0 60 | wceq |  |-  DVecH = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) , g e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` k ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` k ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` k ) ` w ) , f e. ( ( ( LTrn ` k ) ` w ) X. ( ( TEndo ` k ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) ) |