Step |
Hyp |
Ref |
Expression |
1 |
|
dvhset.h |
|- H = ( LHyp ` K ) |
2 |
|
dvhset.t |
|- T = ( ( LTrn ` K ) ` W ) |
3 |
|
dvhset.e |
|- E = ( ( TEndo ` K ) ` W ) |
4 |
|
dvhset.d |
|- D = ( ( EDRing ` K ) ` W ) |
5 |
|
dvhset.u |
|- U = ( ( DVecH ` K ) ` W ) |
6 |
1
|
dvhfset |
|- ( K e. X -> ( DVecH ` K ) = ( w e. H |-> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) , g e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` K ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) ) |
7 |
6
|
fveq1d |
|- ( K e. X -> ( ( DVecH ` K ) ` W ) = ( ( w e. H |-> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) , g e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` K ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) ` W ) ) |
8 |
5 7
|
syl5eq |
|- ( K e. X -> U = ( ( w e. H |-> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) , g e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` K ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) ` W ) ) |
9 |
|
fveq2 |
|- ( w = W -> ( ( LTrn ` K ) ` w ) = ( ( LTrn ` K ) ` W ) ) |
10 |
9 2
|
eqtr4di |
|- ( w = W -> ( ( LTrn ` K ) ` w ) = T ) |
11 |
|
fveq2 |
|- ( w = W -> ( ( TEndo ` K ) ` w ) = ( ( TEndo ` K ) ` W ) ) |
12 |
11 3
|
eqtr4di |
|- ( w = W -> ( ( TEndo ` K ) ` w ) = E ) |
13 |
10 12
|
xpeq12d |
|- ( w = W -> ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) = ( T X. E ) ) |
14 |
13
|
opeq2d |
|- ( w = W -> <. ( Base ` ndx ) , ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) >. = <. ( Base ` ndx ) , ( T X. E ) >. ) |
15 |
10
|
mpteq1d |
|- ( w = W -> ( h e. ( ( LTrn ` K ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) = ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) ) |
16 |
15
|
opeq2d |
|- ( w = W -> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` K ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. = <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) |
17 |
13 13 16
|
mpoeq123dv |
|- ( w = W -> ( f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) , g e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` K ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) = ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) ) |
18 |
17
|
opeq2d |
|- ( w = W -> <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) , g e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` K ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. = <. ( +g ` ndx ) , ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. ) |
19 |
|
fveq2 |
|- ( w = W -> ( ( EDRing ` K ) ` w ) = ( ( EDRing ` K ) ` W ) ) |
20 |
19 4
|
eqtr4di |
|- ( w = W -> ( ( EDRing ` K ) ` w ) = D ) |
21 |
20
|
opeq2d |
|- ( w = W -> <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. = <. ( Scalar ` ndx ) , D >. ) |
22 |
14 18 21
|
tpeq123d |
|- ( w = W -> { <. ( Base ` ndx ) , ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) , g e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` K ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } = { <. ( Base ` ndx ) , ( T X. E ) >. , <. ( +g ` ndx ) , ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , D >. } ) |
23 |
|
eqidd |
|- ( w = W -> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. = <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) |
24 |
12 13 23
|
mpoeq123dv |
|- ( w = W -> ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) = ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) ) |
25 |
24
|
opeq2d |
|- ( w = W -> <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. = <. ( .s ` ndx ) , ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. ) |
26 |
25
|
sneqd |
|- ( w = W -> { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } = { <. ( .s ` ndx ) , ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) |
27 |
22 26
|
uneq12d |
|- ( w = W -> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) , g e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` K ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) = ( { <. ( Base ` ndx ) , ( T X. E ) >. , <. ( +g ` ndx ) , ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , D >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) |
28 |
|
eqid |
|- ( w e. H |-> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) , g e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` K ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) = ( w e. H |-> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) , g e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` K ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) |
29 |
|
tpex |
|- { <. ( Base ` ndx ) , ( T X. E ) >. , <. ( +g ` ndx ) , ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , D >. } e. _V |
30 |
|
snex |
|- { <. ( .s ` ndx ) , ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } e. _V |
31 |
29 30
|
unex |
|- ( { <. ( Base ` ndx ) , ( T X. E ) >. , <. ( +g ` ndx ) , ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , D >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) e. _V |
32 |
27 28 31
|
fvmpt |
|- ( W e. H -> ( ( w e. H |-> ( { <. ( Base ` ndx ) , ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) >. , <. ( +g ` ndx ) , ( f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) , g e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. ( ( LTrn ` K ) ` w ) |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` w ) >. } u. { <. ( .s ` ndx ) , ( s e. ( ( TEndo ` K ) ` w ) , f e. ( ( ( LTrn ` K ) ` w ) X. ( ( TEndo ` K ) ` w ) ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) ` W ) = ( { <. ( Base ` ndx ) , ( T X. E ) >. , <. ( +g ` ndx ) , ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , D >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) |
33 |
8 32
|
sylan9eq |
|- ( ( K e. X /\ W e. H ) -> U = ( { <. ( Base ` ndx ) , ( T X. E ) >. , <. ( +g ` ndx ) , ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , D >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) |