Metamath Proof Explorer


Theorem dvhset

Description: The constructed full vector space H for a lattice K . (Contributed by NM, 17-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvhset.h H = LHyp K
dvhset.t T = LTrn K W
dvhset.e E = TEndo K W
dvhset.d D = EDRing K W
dvhset.u U = DVecH K W
Assertion dvhset K X W H U = Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx D ndx s E , f T × E s 1 st f s 2 nd f

Proof

Step Hyp Ref Expression
1 dvhset.h H = LHyp K
2 dvhset.t T = LTrn K W
3 dvhset.e E = TEndo K W
4 dvhset.d D = EDRing K W
5 dvhset.u U = DVecH K W
6 1 dvhfset K X DVecH K = w H Base ndx LTrn K w × TEndo K w + ndx f LTrn K w × TEndo K w , g LTrn K w × TEndo K w 1 st f 1 st g h LTrn K w 2 nd f h 2 nd g h Scalar ndx EDRing K w ndx s TEndo K w , f LTrn K w × TEndo K w s 1 st f s 2 nd f
7 6 fveq1d K X DVecH K W = w H Base ndx LTrn K w × TEndo K w + ndx f LTrn K w × TEndo K w , g LTrn K w × TEndo K w 1 st f 1 st g h LTrn K w 2 nd f h 2 nd g h Scalar ndx EDRing K w ndx s TEndo K w , f LTrn K w × TEndo K w s 1 st f s 2 nd f W
8 5 7 syl5eq K X U = w H Base ndx LTrn K w × TEndo K w + ndx f LTrn K w × TEndo K w , g LTrn K w × TEndo K w 1 st f 1 st g h LTrn K w 2 nd f h 2 nd g h Scalar ndx EDRing K w ndx s TEndo K w , f LTrn K w × TEndo K w s 1 st f s 2 nd f W
9 fveq2 w = W LTrn K w = LTrn K W
10 9 2 eqtr4di w = W LTrn K w = T
11 fveq2 w = W TEndo K w = TEndo K W
12 11 3 eqtr4di w = W TEndo K w = E
13 10 12 xpeq12d w = W LTrn K w × TEndo K w = T × E
14 13 opeq2d w = W Base ndx LTrn K w × TEndo K w = Base ndx T × E
15 10 mpteq1d w = W h LTrn K w 2 nd f h 2 nd g h = h T 2 nd f h 2 nd g h
16 15 opeq2d w = W 1 st f 1 st g h LTrn K w 2 nd f h 2 nd g h = 1 st f 1 st g h T 2 nd f h 2 nd g h
17 13 13 16 mpoeq123dv w = W f LTrn K w × TEndo K w , g LTrn K w × TEndo K w 1 st f 1 st g h LTrn K w 2 nd f h 2 nd g h = f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h
18 17 opeq2d w = W + ndx f LTrn K w × TEndo K w , g LTrn K w × TEndo K w 1 st f 1 st g h LTrn K w 2 nd f h 2 nd g h = + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h
19 fveq2 w = W EDRing K w = EDRing K W
20 19 4 eqtr4di w = W EDRing K w = D
21 20 opeq2d w = W Scalar ndx EDRing K w = Scalar ndx D
22 14 18 21 tpeq123d w = W Base ndx LTrn K w × TEndo K w + ndx f LTrn K w × TEndo K w , g LTrn K w × TEndo K w 1 st f 1 st g h LTrn K w 2 nd f h 2 nd g h Scalar ndx EDRing K w = Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx D
23 eqidd w = W s 1 st f s 2 nd f = s 1 st f s 2 nd f
24 12 13 23 mpoeq123dv w = W s TEndo K w , f LTrn K w × TEndo K w s 1 st f s 2 nd f = s E , f T × E s 1 st f s 2 nd f
25 24 opeq2d w = W ndx s TEndo K w , f LTrn K w × TEndo K w s 1 st f s 2 nd f = ndx s E , f T × E s 1 st f s 2 nd f
26 25 sneqd w = W ndx s TEndo K w , f LTrn K w × TEndo K w s 1 st f s 2 nd f = ndx s E , f T × E s 1 st f s 2 nd f
27 22 26 uneq12d w = W Base ndx LTrn K w × TEndo K w + ndx f LTrn K w × TEndo K w , g LTrn K w × TEndo K w 1 st f 1 st g h LTrn K w 2 nd f h 2 nd g h Scalar ndx EDRing K w ndx s TEndo K w , f LTrn K w × TEndo K w s 1 st f s 2 nd f = Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx D ndx s E , f T × E s 1 st f s 2 nd f
28 eqid w H Base ndx LTrn K w × TEndo K w + ndx f LTrn K w × TEndo K w , g LTrn K w × TEndo K w 1 st f 1 st g h LTrn K w 2 nd f h 2 nd g h Scalar ndx EDRing K w ndx s TEndo K w , f LTrn K w × TEndo K w s 1 st f s 2 nd f = w H Base ndx LTrn K w × TEndo K w + ndx f LTrn K w × TEndo K w , g LTrn K w × TEndo K w 1 st f 1 st g h LTrn K w 2 nd f h 2 nd g h Scalar ndx EDRing K w ndx s TEndo K w , f LTrn K w × TEndo K w s 1 st f s 2 nd f
29 tpex Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx D V
30 snex ndx s E , f T × E s 1 st f s 2 nd f V
31 29 30 unex Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx D ndx s E , f T × E s 1 st f s 2 nd f V
32 27 28 31 fvmpt W H w H Base ndx LTrn K w × TEndo K w + ndx f LTrn K w × TEndo K w , g LTrn K w × TEndo K w 1 st f 1 st g h LTrn K w 2 nd f h 2 nd g h Scalar ndx EDRing K w ndx s TEndo K w , f LTrn K w × TEndo K w s 1 st f s 2 nd f W = Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx D ndx s E , f T × E s 1 st f s 2 nd f
33 8 32 sylan9eq K X W H U = Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx D ndx s E , f T × E s 1 st f s 2 nd f