Metamath Proof Explorer


Theorem dvhsca

Description: The ring of scalars of the constructed full vector space H. (Contributed by NM, 22-Jun-2014)

Ref Expression
Hypotheses dvhsca.h H = LHyp K
dvhsca.d D = EDRing K W
dvhsca.u U = DVecH K W
dvhsca.f F = Scalar U
Assertion dvhsca K X W H F = D

Proof

Step Hyp Ref Expression
1 dvhsca.h H = LHyp K
2 dvhsca.d D = EDRing K W
3 dvhsca.u U = DVecH K W
4 dvhsca.f F = Scalar U
5 eqid LTrn K W = LTrn K W
6 eqid TEndo K W = TEndo K W
7 1 5 6 2 3 dvhset K X W H U = Base ndx LTrn K W × TEndo K W + ndx f LTrn K W × TEndo K W , g LTrn K W × TEndo K W 1 st f 1 st g h LTrn K W 2 nd f h 2 nd g h Scalar ndx D ndx s TEndo K W , f LTrn K W × TEndo K W s 1 st f s 2 nd f
8 7 fveq2d K X W H Scalar U = Scalar Base ndx LTrn K W × TEndo K W + ndx f LTrn K W × TEndo K W , g LTrn K W × TEndo K W 1 st f 1 st g h LTrn K W 2 nd f h 2 nd g h Scalar ndx D ndx s TEndo K W , f LTrn K W × TEndo K W s 1 st f s 2 nd f
9 2 fvexi D V
10 eqid Base ndx LTrn K W × TEndo K W + ndx f LTrn K W × TEndo K W , g LTrn K W × TEndo K W 1 st f 1 st g h LTrn K W 2 nd f h 2 nd g h Scalar ndx D ndx s TEndo K W , f LTrn K W × TEndo K W s 1 st f s 2 nd f = Base ndx LTrn K W × TEndo K W + ndx f LTrn K W × TEndo K W , g LTrn K W × TEndo K W 1 st f 1 st g h LTrn K W 2 nd f h 2 nd g h Scalar ndx D ndx s TEndo K W , f LTrn K W × TEndo K W s 1 st f s 2 nd f
11 10 lmodsca D V D = Scalar Base ndx LTrn K W × TEndo K W + ndx f LTrn K W × TEndo K W , g LTrn K W × TEndo K W 1 st f 1 st g h LTrn K W 2 nd f h 2 nd g h Scalar ndx D ndx s TEndo K W , f LTrn K W × TEndo K W s 1 st f s 2 nd f
12 9 11 ax-mp D = Scalar Base ndx LTrn K W × TEndo K W + ndx f LTrn K W × TEndo K W , g LTrn K W × TEndo K W 1 st f 1 st g h LTrn K W 2 nd f h 2 nd g h Scalar ndx D ndx s TEndo K W , f LTrn K W × TEndo K W s 1 st f s 2 nd f
13 8 4 12 3eqtr4g K X W H F = D