Metamath Proof Explorer


Theorem dvhbase

Description: The ring base set of the constructed full vector space H. (Contributed by NM, 29-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvhbase.h H = LHyp K
dvhbase.e E = TEndo K W
dvhbase.u U = DVecH K W
dvhbase.f F = Scalar U
dvhbase.c C = Base F
Assertion dvhbase K X W H C = E

Proof

Step Hyp Ref Expression
1 dvhbase.h H = LHyp K
2 dvhbase.e E = TEndo K W
3 dvhbase.u U = DVecH K W
4 dvhbase.f F = Scalar U
5 dvhbase.c C = Base F
6 eqid EDRing K W = EDRing K W
7 1 6 3 4 dvhsca K X W H F = EDRing K W
8 7 fveq2d K X W H Base F = Base EDRing K W
9 5 8 syl5eq K X W H C = Base EDRing K W
10 eqid LTrn K W = LTrn K W
11 eqid Base EDRing K W = Base EDRing K W
12 1 10 2 6 11 erngbase K X W H Base EDRing K W = E
13 9 12 eqtrd K X W H C = E