Metamath Proof Explorer


Theorem dvhfplusr

Description: Ring addition operation for the constructed full vector space H. (Contributed by NM, 29-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvhfplusr.h H = LHyp K
dvhfplusr.t T = LTrn K W
dvhfplusr.e E = TEndo K W
dvhfplusr.u U = DVecH K W
dvhfplusr.f F = Scalar U
dvhfplusr.p + ˙ = s E , t E f T s f t f
dvhfplusr.s ˙ = + F
Assertion dvhfplusr K V W H ˙ = + ˙

Proof

Step Hyp Ref Expression
1 dvhfplusr.h H = LHyp K
2 dvhfplusr.t T = LTrn K W
3 dvhfplusr.e E = TEndo K W
4 dvhfplusr.u U = DVecH K W
5 dvhfplusr.f F = Scalar U
6 dvhfplusr.p + ˙ = s E , t E f T s f t f
7 dvhfplusr.s ˙ = + F
8 eqid EDRing K W = EDRing K W
9 1 8 4 5 dvhsca K V W H F = EDRing K W
10 9 fveq2d K V W H + F = + EDRing K W
11 eqid + EDRing K W = + EDRing K W
12 1 2 3 8 11 erngfplus K V W H + EDRing K W = s E , t E f T s f t f
13 10 12 eqtrd K V W H + F = s E , t E f T s f t f
14 13 7 6 3eqtr4g K V W H ˙ = + ˙