| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvhfplusr.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dvhfplusr.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 3 |
|
dvhfplusr.e |
|- E = ( ( TEndo ` K ) ` W ) |
| 4 |
|
dvhfplusr.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 5 |
|
dvhfplusr.f |
|- F = ( Scalar ` U ) |
| 6 |
|
dvhfplusr.p |
|- .+ = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) |
| 7 |
|
dvhfplusr.s |
|- .+b = ( +g ` F ) |
| 8 |
|
eqid |
|- ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W ) |
| 9 |
1 8 4 5
|
dvhsca |
|- ( ( K e. V /\ W e. H ) -> F = ( ( EDRing ` K ) ` W ) ) |
| 10 |
9
|
fveq2d |
|- ( ( K e. V /\ W e. H ) -> ( +g ` F ) = ( +g ` ( ( EDRing ` K ) ` W ) ) ) |
| 11 |
|
eqid |
|- ( +g ` ( ( EDRing ` K ) ` W ) ) = ( +g ` ( ( EDRing ` K ) ` W ) ) |
| 12 |
1 2 3 8 11
|
erngfplus |
|- ( ( K e. V /\ W e. H ) -> ( +g ` ( ( EDRing ` K ) ` W ) ) = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) ) |
| 13 |
10 12
|
eqtrd |
|- ( ( K e. V /\ W e. H ) -> ( +g ` F ) = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) ) |
| 14 |
13 7 6
|
3eqtr4g |
|- ( ( K e. V /\ W e. H ) -> .+b = .+ ) |