Metamath Proof Explorer


Theorem dvhfmulr

Description: Ring multiplication operation for the constructed full vector space H. (Contributed by NM, 29-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvhfmul.h H = LHyp K
dvhfmul.t T = LTrn K W
dvhfmul.e E = TEndo K W
dvhfmul.u U = DVecH K W
dvhfmul.f F = Scalar U
dvhfmul.m · ˙ = F
Assertion dvhfmulr K V W H · ˙ = s E , t E s t

Proof

Step Hyp Ref Expression
1 dvhfmul.h H = LHyp K
2 dvhfmul.t T = LTrn K W
3 dvhfmul.e E = TEndo K W
4 dvhfmul.u U = DVecH K W
5 dvhfmul.f F = Scalar U
6 dvhfmul.m · ˙ = F
7 eqid EDRing K W = EDRing K W
8 1 7 4 5 dvhsca K V W H F = EDRing K W
9 8 fveq2d K V W H F = EDRing K W
10 6 9 syl5eq K V W H · ˙ = EDRing K W
11 eqid EDRing K W = EDRing K W
12 1 2 3 7 11 erngfmul K V W H EDRing K W = s E , t E s t
13 10 12 eqtrd K V W H · ˙ = s E , t E s t