Step |
Hyp |
Ref |
Expression |
1 |
|
dvhfmul.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvhfmul.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dvhfmul.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dvhfmul.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dvhfmul.f |
⊢ 𝐹 = ( Scalar ‘ 𝑈 ) |
6 |
|
dvhfmul.m |
⊢ · = ( .r ‘ 𝐹 ) |
7 |
|
eqid |
⊢ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
1 7 4 5
|
dvhsca |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝐹 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
9 |
8
|
fveq2d |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( .r ‘ 𝐹 ) = ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
10 |
6 9
|
syl5eq |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → · = ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
11 |
|
eqid |
⊢ ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
12 |
1 2 3 7 11
|
erngfmul |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( .r ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑠 ∘ 𝑡 ) ) ) |
13 |
10 12
|
eqtrd |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → · = ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑠 ∘ 𝑡 ) ) ) |