| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvhfmul.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
dvhfmul.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
dvhfmul.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
dvhfmul.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
dvhfmul.f |
⊢ 𝐹 = ( Scalar ‘ 𝑈 ) |
| 6 |
|
dvhfmul.m |
⊢ · = ( .r ‘ 𝐹 ) |
| 7 |
1 2 3 4 5 6
|
dvhfmulr |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → · = ( 𝑟 ∈ 𝐸 , 𝑠 ∈ 𝐸 ↦ ( 𝑟 ∘ 𝑠 ) ) ) |
| 8 |
7
|
oveqd |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝑅 · 𝑆 ) = ( 𝑅 ( 𝑟 ∈ 𝐸 , 𝑠 ∈ 𝐸 ↦ ( 𝑟 ∘ 𝑠 ) ) 𝑆 ) ) |
| 9 |
|
coexg |
⊢ ( ( 𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ) → ( 𝑅 ∘ 𝑆 ) ∈ V ) |
| 10 |
|
coeq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ∘ 𝑠 ) = ( 𝑅 ∘ 𝑠 ) ) |
| 11 |
|
coeq2 |
⊢ ( 𝑠 = 𝑆 → ( 𝑅 ∘ 𝑠 ) = ( 𝑅 ∘ 𝑆 ) ) |
| 12 |
|
eqid |
⊢ ( 𝑟 ∈ 𝐸 , 𝑠 ∈ 𝐸 ↦ ( 𝑟 ∘ 𝑠 ) ) = ( 𝑟 ∈ 𝐸 , 𝑠 ∈ 𝐸 ↦ ( 𝑟 ∘ 𝑠 ) ) |
| 13 |
10 11 12
|
ovmpog |
⊢ ( ( 𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ ( 𝑅 ∘ 𝑆 ) ∈ V ) → ( 𝑅 ( 𝑟 ∈ 𝐸 , 𝑠 ∈ 𝐸 ↦ ( 𝑟 ∘ 𝑠 ) ) 𝑆 ) = ( 𝑅 ∘ 𝑆 ) ) |
| 14 |
9 13
|
mpd3an3 |
⊢ ( ( 𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ) → ( 𝑅 ( 𝑟 ∈ 𝐸 , 𝑠 ∈ 𝐸 ↦ ( 𝑟 ∘ 𝑠 ) ) 𝑆 ) = ( 𝑅 ∘ 𝑆 ) ) |
| 15 |
8 14
|
sylan9eq |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ) ) → ( 𝑅 · 𝑆 ) = ( 𝑅 ∘ 𝑆 ) ) |