Metamath Proof Explorer


Theorem dvhmulr

Description: Ring multiplication operation for the constructed full vector space H. (Contributed by NM, 29-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvhfmul.h H = LHyp K
dvhfmul.t T = LTrn K W
dvhfmul.e E = TEndo K W
dvhfmul.u U = DVecH K W
dvhfmul.f F = Scalar U
dvhfmul.m · ˙ = F
Assertion dvhmulr K V W H R E S E R · ˙ S = R S

Proof

Step Hyp Ref Expression
1 dvhfmul.h H = LHyp K
2 dvhfmul.t T = LTrn K W
3 dvhfmul.e E = TEndo K W
4 dvhfmul.u U = DVecH K W
5 dvhfmul.f F = Scalar U
6 dvhfmul.m · ˙ = F
7 1 2 3 4 5 6 dvhfmulr K V W H · ˙ = r E , s E r s
8 7 oveqd K V W H R · ˙ S = R r E , s E r s S
9 coexg R E S E R S V
10 coeq1 r = R r s = R s
11 coeq2 s = S R s = R S
12 eqid r E , s E r s = r E , s E r s
13 10 11 12 ovmpog R E S E R S V R r E , s E r s S = R S
14 9 13 mpd3an3 R E S E R r E , s E r s S = R S
15 8 14 sylan9eq K V W H R E S E R · ˙ S = R S