Metamath Proof Explorer


Theorem dvhmulr

Description: Ring multiplication operation for the constructed full vector space H. (Contributed by NM, 29-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvhfmul.h H=LHypK
dvhfmul.t T=LTrnKW
dvhfmul.e E=TEndoKW
dvhfmul.u U=DVecHKW
dvhfmul.f F=ScalarU
dvhfmul.m ·˙=F
Assertion dvhmulr KVWHRESER·˙S=RS

Proof

Step Hyp Ref Expression
1 dvhfmul.h H=LHypK
2 dvhfmul.t T=LTrnKW
3 dvhfmul.e E=TEndoKW
4 dvhfmul.u U=DVecHKW
5 dvhfmul.f F=ScalarU
6 dvhfmul.m ·˙=F
7 1 2 3 4 5 6 dvhfmulr KVWH·˙=rE,sErs
8 7 oveqd KVWHR·˙S=RrE,sErsS
9 coexg RESERSV
10 coeq1 r=Rrs=Rs
11 coeq2 s=SRs=RS
12 eqid rE,sErs=rE,sErs
13 10 11 12 ovmpog RESERSVRrE,sErsS=RS
14 9 13 mpd3an3 RESERrE,sErsS=RS
15 8 14 sylan9eq KVWHRESER·˙S=RS