Metamath Proof Explorer


Definition df-dvech

Description: Define constructed full vector space H. (Contributed by NM, 17-Oct-2013)

Ref Expression
Assertion df-dvech DVecH = k V w LHyp k Base ndx LTrn k w × TEndo k w + ndx f LTrn k w × TEndo k w , g LTrn k w × TEndo k w 1 st f 1 st g h LTrn k w 2 nd f h 2 nd g h Scalar ndx EDRing k w ndx s TEndo k w , f LTrn k w × TEndo k w s 1 st f s 2 nd f

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdvh class DVecH
1 vk setvar k
2 cvv class V
3 vw setvar w
4 clh class LHyp
5 1 cv setvar k
6 5 4 cfv class LHyp k
7 cbs class Base
8 cnx class ndx
9 8 7 cfv class Base ndx
10 cltrn class LTrn
11 5 10 cfv class LTrn k
12 3 cv setvar w
13 12 11 cfv class LTrn k w
14 ctendo class TEndo
15 5 14 cfv class TEndo k
16 12 15 cfv class TEndo k w
17 13 16 cxp class LTrn k w × TEndo k w
18 9 17 cop class Base ndx LTrn k w × TEndo k w
19 cplusg class + 𝑔
20 8 19 cfv class + ndx
21 vf setvar f
22 vg setvar g
23 c1st class 1 st
24 21 cv setvar f
25 24 23 cfv class 1 st f
26 22 cv setvar g
27 26 23 cfv class 1 st g
28 25 27 ccom class 1 st f 1 st g
29 vh setvar h
30 c2nd class 2 nd
31 24 30 cfv class 2 nd f
32 29 cv setvar h
33 32 31 cfv class 2 nd f h
34 26 30 cfv class 2 nd g
35 32 34 cfv class 2 nd g h
36 33 35 ccom class 2 nd f h 2 nd g h
37 29 13 36 cmpt class h LTrn k w 2 nd f h 2 nd g h
38 28 37 cop class 1 st f 1 st g h LTrn k w 2 nd f h 2 nd g h
39 21 22 17 17 38 cmpo class f LTrn k w × TEndo k w , g LTrn k w × TEndo k w 1 st f 1 st g h LTrn k w 2 nd f h 2 nd g h
40 20 39 cop class + ndx f LTrn k w × TEndo k w , g LTrn k w × TEndo k w 1 st f 1 st g h LTrn k w 2 nd f h 2 nd g h
41 csca class Scalar
42 8 41 cfv class Scalar ndx
43 cedring class EDRing
44 5 43 cfv class EDRing k
45 12 44 cfv class EDRing k w
46 42 45 cop class Scalar ndx EDRing k w
47 18 40 46 ctp class Base ndx LTrn k w × TEndo k w + ndx f LTrn k w × TEndo k w , g LTrn k w × TEndo k w 1 st f 1 st g h LTrn k w 2 nd f h 2 nd g h Scalar ndx EDRing k w
48 cvsca class 𝑠
49 8 48 cfv class ndx
50 vs setvar s
51 50 cv setvar s
52 25 51 cfv class s 1 st f
53 51 31 ccom class s 2 nd f
54 52 53 cop class s 1 st f s 2 nd f
55 50 21 16 17 54 cmpo class s TEndo k w , f LTrn k w × TEndo k w s 1 st f s 2 nd f
56 49 55 cop class ndx s TEndo k w , f LTrn k w × TEndo k w s 1 st f s 2 nd f
57 56 csn class ndx s TEndo k w , f LTrn k w × TEndo k w s 1 st f s 2 nd f
58 47 57 cun class Base ndx LTrn k w × TEndo k w + ndx f LTrn k w × TEndo k w , g LTrn k w × TEndo k w 1 st f 1 st g h LTrn k w 2 nd f h 2 nd g h Scalar ndx EDRing k w ndx s TEndo k w , f LTrn k w × TEndo k w s 1 st f s 2 nd f
59 3 6 58 cmpt class w LHyp k Base ndx LTrn k w × TEndo k w + ndx f LTrn k w × TEndo k w , g LTrn k w × TEndo k w 1 st f 1 st g h LTrn k w 2 nd f h 2 nd g h Scalar ndx EDRing k w ndx s TEndo k w , f LTrn k w × TEndo k w s 1 st f s 2 nd f
60 1 2 59 cmpt class k V w LHyp k Base ndx LTrn k w × TEndo k w + ndx f LTrn k w × TEndo k w , g LTrn k w × TEndo k w 1 st f 1 st g h LTrn k w 2 nd f h 2 nd g h Scalar ndx EDRing k w ndx s TEndo k w , f LTrn k w × TEndo k w s 1 st f s 2 nd f
61 0 60 wceq wff DVecH = k V w LHyp k Base ndx LTrn k w × TEndo k w + ndx f LTrn k w × TEndo k w , g LTrn k w × TEndo k w 1 st f 1 st g h LTrn k w 2 nd f h 2 nd g h Scalar ndx EDRing k w ndx s TEndo k w , f LTrn k w × TEndo k w s 1 st f s 2 nd f