Metamath Proof Explorer


Theorem dvhvbase

Description: The vectors (vector base set) of the constructed full vector space H are all translations (for a fiducial co-atom W ). (Contributed by NM, 2-Nov-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvhvbase.h H = LHyp K
dvhvbase.t T = LTrn K W
dvhvbase.e E = TEndo K W
dvhvbase.u U = DVecH K W
dvhvbase.v V = Base U
Assertion dvhvbase K X W H V = T × E

Proof

Step Hyp Ref Expression
1 dvhvbase.h H = LHyp K
2 dvhvbase.t T = LTrn K W
3 dvhvbase.e E = TEndo K W
4 dvhvbase.u U = DVecH K W
5 dvhvbase.v V = Base U
6 eqid EDRing K W = EDRing K W
7 1 2 3 6 4 dvhset K X W H U = Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx EDRing K W ndx s E , f T × E s 1 st f s 2 nd f
8 7 fveq2d K X W H Base U = Base Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx EDRing K W ndx s E , f T × E s 1 st f s 2 nd f
9 2 fvexi T V
10 3 fvexi E V
11 9 10 xpex T × E V
12 eqid Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx EDRing K W ndx s E , f T × E s 1 st f s 2 nd f = Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx EDRing K W ndx s E , f T × E s 1 st f s 2 nd f
13 12 lmodbase T × E V T × E = Base Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx EDRing K W ndx s E , f T × E s 1 st f s 2 nd f
14 11 13 ax-mp T × E = Base Base ndx T × E + ndx f T × E , g T × E 1 st f 1 st g h T 2 nd f h 2 nd g h Scalar ndx EDRing K W ndx s E , f T × E s 1 st f s 2 nd f
15 8 5 14 3eqtr4g K X W H V = T × E