Step |
Hyp |
Ref |
Expression |
1 |
|
dvhvbase.h |
|- H = ( LHyp ` K ) |
2 |
|
dvhvbase.t |
|- T = ( ( LTrn ` K ) ` W ) |
3 |
|
dvhvbase.e |
|- E = ( ( TEndo ` K ) ` W ) |
4 |
|
dvhvbase.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
dvhvbase.v |
|- V = ( Base ` U ) |
6 |
|
eqid |
|- ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W ) |
7 |
1 2 3 6 4
|
dvhset |
|- ( ( K e. X /\ W e. H ) -> U = ( { <. ( Base ` ndx ) , ( T X. E ) >. , <. ( +g ` ndx ) , ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` W ) >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) |
8 |
7
|
fveq2d |
|- ( ( K e. X /\ W e. H ) -> ( Base ` U ) = ( Base ` ( { <. ( Base ` ndx ) , ( T X. E ) >. , <. ( +g ` ndx ) , ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` W ) >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) ) |
9 |
2
|
fvexi |
|- T e. _V |
10 |
3
|
fvexi |
|- E e. _V |
11 |
9 10
|
xpex |
|- ( T X. E ) e. _V |
12 |
|
eqid |
|- ( { <. ( Base ` ndx ) , ( T X. E ) >. , <. ( +g ` ndx ) , ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` W ) >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) = ( { <. ( Base ` ndx ) , ( T X. E ) >. , <. ( +g ` ndx ) , ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` W ) >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) |
13 |
12
|
lmodbase |
|- ( ( T X. E ) e. _V -> ( T X. E ) = ( Base ` ( { <. ( Base ` ndx ) , ( T X. E ) >. , <. ( +g ` ndx ) , ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` W ) >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) ) |
14 |
11 13
|
ax-mp |
|- ( T X. E ) = ( Base ` ( { <. ( Base ` ndx ) , ( T X. E ) >. , <. ( +g ` ndx ) , ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` W ) >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) |
15 |
8 5 14
|
3eqtr4g |
|- ( ( K e. X /\ W e. H ) -> V = ( T X. E ) ) |