Metamath Proof Explorer


Theorem dvhvbase

Description: The vectors (vector base set) of the constructed full vector space H are all translations (for a fiducial co-atom W ). (Contributed by NM, 2-Nov-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvhvbase.h
|- H = ( LHyp ` K )
dvhvbase.t
|- T = ( ( LTrn ` K ) ` W )
dvhvbase.e
|- E = ( ( TEndo ` K ) ` W )
dvhvbase.u
|- U = ( ( DVecH ` K ) ` W )
dvhvbase.v
|- V = ( Base ` U )
Assertion dvhvbase
|- ( ( K e. X /\ W e. H ) -> V = ( T X. E ) )

Proof

Step Hyp Ref Expression
1 dvhvbase.h
 |-  H = ( LHyp ` K )
2 dvhvbase.t
 |-  T = ( ( LTrn ` K ) ` W )
3 dvhvbase.e
 |-  E = ( ( TEndo ` K ) ` W )
4 dvhvbase.u
 |-  U = ( ( DVecH ` K ) ` W )
5 dvhvbase.v
 |-  V = ( Base ` U )
6 eqid
 |-  ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W )
7 1 2 3 6 4 dvhset
 |-  ( ( K e. X /\ W e. H ) -> U = ( { <. ( Base ` ndx ) , ( T X. E ) >. , <. ( +g ` ndx ) , ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` W ) >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) )
8 7 fveq2d
 |-  ( ( K e. X /\ W e. H ) -> ( Base ` U ) = ( Base ` ( { <. ( Base ` ndx ) , ( T X. E ) >. , <. ( +g ` ndx ) , ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` W ) >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) )
9 2 fvexi
 |-  T e. _V
10 3 fvexi
 |-  E e. _V
11 9 10 xpex
 |-  ( T X. E ) e. _V
12 eqid
 |-  ( { <. ( Base ` ndx ) , ( T X. E ) >. , <. ( +g ` ndx ) , ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` W ) >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) = ( { <. ( Base ` ndx ) , ( T X. E ) >. , <. ( +g ` ndx ) , ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` W ) >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } )
13 12 lmodbase
 |-  ( ( T X. E ) e. _V -> ( T X. E ) = ( Base ` ( { <. ( Base ` ndx ) , ( T X. E ) >. , <. ( +g ` ndx ) , ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` W ) >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) ) )
14 11 13 ax-mp
 |-  ( T X. E ) = ( Base ` ( { <. ( Base ` ndx ) , ( T X. E ) >. , <. ( +g ` ndx ) , ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( h e. T |-> ( ( ( 2nd ` f ) ` h ) o. ( ( 2nd ` g ) ` h ) ) ) >. ) >. , <. ( Scalar ` ndx ) , ( ( EDRing ` K ) ` W ) >. } u. { <. ( .s ` ndx ) , ( s e. E , f e. ( T X. E ) |-> <. ( s ` ( 1st ` f ) ) , ( s o. ( 2nd ` f ) ) >. ) >. } ) )
15 8 5 14 3eqtr4g
 |-  ( ( K e. X /\ W e. H ) -> V = ( T X. E ) )