Metamath Proof Explorer


Theorem dvhelvbasei

Description: Vector membership in the constructed full vector space H. (Contributed by NM, 20-Feb-2014)

Ref Expression
Hypotheses dvhvbase.h H = LHyp K
dvhvbase.t T = LTrn K W
dvhvbase.e E = TEndo K W
dvhvbase.u U = DVecH K W
dvhvbase.v V = Base U
Assertion dvhelvbasei K X W H F T S E F S V

Proof

Step Hyp Ref Expression
1 dvhvbase.h H = LHyp K
2 dvhvbase.t T = LTrn K W
3 dvhvbase.e E = TEndo K W
4 dvhvbase.u U = DVecH K W
5 dvhvbase.v V = Base U
6 opelxpi F T S E F S T × E
7 6 adantl K X W H F T S E F S T × E
8 1 2 3 4 5 dvhvbase K X W H V = T × E
9 8 adantr K X W H F T S E V = T × E
10 7 9 eleqtrrd K X W H F T S E F S V