Metamath Proof Explorer


Theorem dvhsca

Description: The ring of scalars of the constructed full vector space H. (Contributed by NM, 22-Jun-2014)

Ref Expression
Hypotheses dvhsca.h 𝐻 = ( LHyp ‘ 𝐾 )
dvhsca.d 𝐷 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
dvhsca.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dvhsca.f 𝐹 = ( Scalar ‘ 𝑈 )
Assertion dvhsca ( ( 𝐾𝑋𝑊𝐻 ) → 𝐹 = 𝐷 )

Proof

Step Hyp Ref Expression
1 dvhsca.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvhsca.d 𝐷 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
3 dvhsca.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 dvhsca.f 𝐹 = ( Scalar ‘ 𝑈 )
5 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 eqid ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
7 1 5 6 2 3 dvhset ( ( 𝐾𝑋𝑊𝐻 ) → 𝑈 = ( { ⟨ ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐷 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) )
8 7 fveq2d ( ( 𝐾𝑋𝑊𝐻 ) → ( Scalar ‘ 𝑈 ) = ( Scalar ‘ ( { ⟨ ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐷 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) ) )
9 2 fvexi 𝐷 ∈ V
10 eqid ( { ⟨ ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐷 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐷 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } )
11 10 lmodsca ( 𝐷 ∈ V → 𝐷 = ( Scalar ‘ ( { ⟨ ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐷 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) ) )
12 9 11 ax-mp 𝐷 = ( Scalar ‘ ( { ⟨ ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( ( 2nd𝑓 ) ‘ ) ∘ ( ( 2nd𝑔 ) ‘ ) ) ) ⟩ ) ⟩ , ⟨ ( Scalar ‘ ndx ) , 𝐷 ⟩ } ∪ { ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ ⟨ ( 𝑠 ‘ ( 1st𝑓 ) ) , ( 𝑠 ∘ ( 2nd𝑓 ) ) ⟩ ) ⟩ } ) )
13 8 4 12 3eqtr4g ( ( 𝐾𝑋𝑊𝐻 ) → 𝐹 = 𝐷 )