Step |
Hyp |
Ref |
Expression |
1 |
|
dvhsca.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvhsca.d |
⊢ 𝐷 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dvhsca.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dvhsca.f |
⊢ 𝐹 = ( Scalar ‘ 𝑈 ) |
5 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
1 5 6 2 3
|
dvhset |
⊢ ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) → 𝑈 = ( { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) → ( Scalar ‘ 𝑈 ) = ( Scalar ‘ ( { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) ) ) |
9 |
2
|
fvexi |
⊢ 𝐷 ∈ V |
10 |
|
eqid |
⊢ ( { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) = ( { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) |
11 |
10
|
lmodsca |
⊢ ( 𝐷 ∈ V → 𝐷 = ( Scalar ‘ ( { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) ) ) |
12 |
9 11
|
ax-mp |
⊢ 𝐷 = ( Scalar ‘ ( { 〈 ( Base ‘ ndx ) , ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) , 𝑔 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ 〈 ( ( 1st ‘ 𝑓 ) ∘ ( 1st ‘ 𝑔 ) ) , ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( ( ( 2nd ‘ 𝑓 ) ‘ ℎ ) ∘ ( ( 2nd ‘ 𝑔 ) ‘ ℎ ) ) ) 〉 ) 〉 , 〈 ( Scalar ‘ ndx ) , 𝐷 〉 } ∪ { 〈 ( ·𝑠 ‘ ndx ) , ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑓 ∈ ( ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↦ 〈 ( 𝑠 ‘ ( 1st ‘ 𝑓 ) ) , ( 𝑠 ∘ ( 2nd ‘ 𝑓 ) ) 〉 ) 〉 } ) ) |
13 |
8 4 12
|
3eqtr4g |
⊢ ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) → 𝐹 = 𝐷 ) |