Metamath Proof Explorer


Theorem dvhbase

Description: The ring base set of the constructed full vector space H. (Contributed by NM, 29-Oct-2013) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvhbase.h 𝐻 = ( LHyp ‘ 𝐾 )
dvhbase.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dvhbase.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dvhbase.f 𝐹 = ( Scalar ‘ 𝑈 )
dvhbase.c 𝐶 = ( Base ‘ 𝐹 )
Assertion dvhbase ( ( 𝐾𝑋𝑊𝐻 ) → 𝐶 = 𝐸 )

Proof

Step Hyp Ref Expression
1 dvhbase.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvhbase.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
3 dvhbase.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 dvhbase.f 𝐹 = ( Scalar ‘ 𝑈 )
5 dvhbase.c 𝐶 = ( Base ‘ 𝐹 )
6 eqid ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 )
7 1 6 3 4 dvhsca ( ( 𝐾𝑋𝑊𝐻 ) → 𝐹 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
8 7 fveq2d ( ( 𝐾𝑋𝑊𝐻 ) → ( Base ‘ 𝐹 ) = ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) )
9 5 8 syl5eq ( ( 𝐾𝑋𝑊𝐻 ) → 𝐶 = ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) )
10 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
11 eqid ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) )
12 1 10 2 6 11 erngbase ( ( 𝐾𝑋𝑊𝐻 ) → ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝐸 )
13 9 12 eqtrd ( ( 𝐾𝑋𝑊𝐻 ) → 𝐶 = 𝐸 )