Step |
Hyp |
Ref |
Expression |
1 |
|
dvhbase.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvhbase.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dvhbase.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dvhbase.f |
⊢ 𝐹 = ( Scalar ‘ 𝑈 ) |
5 |
|
dvhbase.c |
⊢ 𝐶 = ( Base ‘ 𝐹 ) |
6 |
|
eqid |
⊢ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
1 6 3 4
|
dvhsca |
⊢ ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) → 𝐹 = ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ 𝐹 ) = ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
9 |
5 8
|
syl5eq |
⊢ ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) → 𝐶 = ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
10 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) |
12 |
1 10 2 6 11
|
erngbase |
⊢ ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ ( ( EDRing ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝐸 ) |
13 |
9 12
|
eqtrd |
⊢ ( ( 𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻 ) → 𝐶 = 𝐸 ) |