Step |
Hyp |
Ref |
Expression |
1 |
|
dvh0g.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dvh0g.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dvh0g.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dvh0g.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
dvh0g.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
dvh0g.o |
⊢ 𝑂 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
7 |
|
id |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
1 2 3
|
idltrn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝐵 ) ∈ 𝑇 ) |
9 |
|
eqid |
⊢ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
1 2 3 9 6
|
tendo0cl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑂 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
11 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
12 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
13 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑈 ) ) = ( +g ‘ ( Scalar ‘ 𝑈 ) ) |
14 |
2 3 9 4 11 12 13
|
dvhopvadd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( I ↾ 𝐵 ) ∈ 𝑇 ∧ 𝑂 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ( ( I ↾ 𝐵 ) ∈ 𝑇 ∧ 𝑂 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ( +g ‘ 𝑈 ) 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ) = 〈 ( ( I ↾ 𝐵 ) ∘ ( I ↾ 𝐵 ) ) , ( 𝑂 ( +g ‘ ( Scalar ‘ 𝑈 ) ) 𝑂 ) 〉 ) |
15 |
7 8 10 8 10 14
|
syl122anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ( +g ‘ 𝑈 ) 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ) = 〈 ( ( I ↾ 𝐵 ) ∘ ( I ↾ 𝐵 ) ) , ( 𝑂 ( +g ‘ ( Scalar ‘ 𝑈 ) ) 𝑂 ) 〉 ) |
16 |
|
f1oi |
⊢ ( I ↾ 𝐵 ) : 𝐵 –1-1-onto→ 𝐵 |
17 |
|
f1of |
⊢ ( ( I ↾ 𝐵 ) : 𝐵 –1-1-onto→ 𝐵 → ( I ↾ 𝐵 ) : 𝐵 ⟶ 𝐵 ) |
18 |
|
fcoi2 |
⊢ ( ( I ↾ 𝐵 ) : 𝐵 ⟶ 𝐵 → ( ( I ↾ 𝐵 ) ∘ ( I ↾ 𝐵 ) ) = ( I ↾ 𝐵 ) ) |
19 |
16 17 18
|
mp2b |
⊢ ( ( I ↾ 𝐵 ) ∘ ( I ↾ 𝐵 ) ) = ( I ↾ 𝐵 ) |
20 |
19
|
a1i |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( I ↾ 𝐵 ) ∘ ( I ↾ 𝐵 ) ) = ( I ↾ 𝐵 ) ) |
21 |
|
eqid |
⊢ ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) = ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) |
22 |
2 3 9 4 11 21 13
|
dvhfplusr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( +g ‘ ( Scalar ‘ 𝑈 ) ) = ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) ) |
23 |
22
|
oveqd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑂 ( +g ‘ ( Scalar ‘ 𝑈 ) ) 𝑂 ) = ( 𝑂 ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 𝑂 ) ) |
24 |
1 2 3 9 6 21
|
tendo0pl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑂 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑂 ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 𝑂 ) = 𝑂 ) |
25 |
10 24
|
mpdan |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑂 ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) , 𝑡 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) 𝑂 ) = 𝑂 ) |
26 |
23 25
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑂 ( +g ‘ ( Scalar ‘ 𝑈 ) ) 𝑂 ) = 𝑂 ) |
27 |
20 26
|
opeq12d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 〈 ( ( I ↾ 𝐵 ) ∘ ( I ↾ 𝐵 ) ) , ( 𝑂 ( +g ‘ ( Scalar ‘ 𝑈 ) ) 𝑂 ) 〉 = 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ) |
28 |
15 27
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ( +g ‘ 𝑈 ) 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ) = 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ) |
29 |
2 4 7
|
dvhlmod |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑈 ∈ LMod ) |
30 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
31 |
2 3 9 4 30
|
dvhelvbasei |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( I ↾ 𝐵 ) ∈ 𝑇 ∧ 𝑂 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ∈ ( Base ‘ 𝑈 ) ) |
32 |
7 8 10 31
|
syl12anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ∈ ( Base ‘ 𝑈 ) ) |
33 |
30 12 5
|
lmod0vid |
⊢ ( ( 𝑈 ∈ LMod ∧ 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ∈ ( Base ‘ 𝑈 ) ) → ( ( 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ( +g ‘ 𝑈 ) 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ) = 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ↔ 0 = 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ) ) |
34 |
29 32 33
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ( +g ‘ 𝑈 ) 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ) = 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ↔ 0 = 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ) ) |
35 |
28 34
|
mpbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 0 = 〈 ( I ↾ 𝐵 ) , 𝑂 〉 ) |