Step |
Hyp |
Ref |
Expression |
1 |
|
dvh0g.b |
|- B = ( Base ` K ) |
2 |
|
dvh0g.h |
|- H = ( LHyp ` K ) |
3 |
|
dvh0g.t |
|- T = ( ( LTrn ` K ) ` W ) |
4 |
|
dvh0g.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
dvh0g.z |
|- .0. = ( 0g ` U ) |
6 |
|
dvh0g.o |
|- O = ( f e. T |-> ( _I |` B ) ) |
7 |
|
id |
|- ( ( K e. HL /\ W e. H ) -> ( K e. HL /\ W e. H ) ) |
8 |
1 2 3
|
idltrn |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` B ) e. T ) |
9 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
10 |
1 2 3 9 6
|
tendo0cl |
|- ( ( K e. HL /\ W e. H ) -> O e. ( ( TEndo ` K ) ` W ) ) |
11 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
12 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
13 |
|
eqid |
|- ( +g ` ( Scalar ` U ) ) = ( +g ` ( Scalar ` U ) ) |
14 |
2 3 9 4 11 12 13
|
dvhopvadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( _I |` B ) e. T /\ O e. ( ( TEndo ` K ) ` W ) ) /\ ( ( _I |` B ) e. T /\ O e. ( ( TEndo ` K ) ` W ) ) ) -> ( <. ( _I |` B ) , O >. ( +g ` U ) <. ( _I |` B ) , O >. ) = <. ( ( _I |` B ) o. ( _I |` B ) ) , ( O ( +g ` ( Scalar ` U ) ) O ) >. ) |
15 |
7 8 10 8 10 14
|
syl122anc |
|- ( ( K e. HL /\ W e. H ) -> ( <. ( _I |` B ) , O >. ( +g ` U ) <. ( _I |` B ) , O >. ) = <. ( ( _I |` B ) o. ( _I |` B ) ) , ( O ( +g ` ( Scalar ` U ) ) O ) >. ) |
16 |
|
f1oi |
|- ( _I |` B ) : B -1-1-onto-> B |
17 |
|
f1of |
|- ( ( _I |` B ) : B -1-1-onto-> B -> ( _I |` B ) : B --> B ) |
18 |
|
fcoi2 |
|- ( ( _I |` B ) : B --> B -> ( ( _I |` B ) o. ( _I |` B ) ) = ( _I |` B ) ) |
19 |
16 17 18
|
mp2b |
|- ( ( _I |` B ) o. ( _I |` B ) ) = ( _I |` B ) |
20 |
19
|
a1i |
|- ( ( K e. HL /\ W e. H ) -> ( ( _I |` B ) o. ( _I |` B ) ) = ( _I |` B ) ) |
21 |
|
eqid |
|- ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) = ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) |
22 |
2 3 9 4 11 21 13
|
dvhfplusr |
|- ( ( K e. HL /\ W e. H ) -> ( +g ` ( Scalar ` U ) ) = ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) ) |
23 |
22
|
oveqd |
|- ( ( K e. HL /\ W e. H ) -> ( O ( +g ` ( Scalar ` U ) ) O ) = ( O ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) O ) ) |
24 |
1 2 3 9 6 21
|
tendo0pl |
|- ( ( ( K e. HL /\ W e. H ) /\ O e. ( ( TEndo ` K ) ` W ) ) -> ( O ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) O ) = O ) |
25 |
10 24
|
mpdan |
|- ( ( K e. HL /\ W e. H ) -> ( O ( s e. ( ( TEndo ` K ) ` W ) , t e. ( ( TEndo ` K ) ` W ) |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) O ) = O ) |
26 |
23 25
|
eqtrd |
|- ( ( K e. HL /\ W e. H ) -> ( O ( +g ` ( Scalar ` U ) ) O ) = O ) |
27 |
20 26
|
opeq12d |
|- ( ( K e. HL /\ W e. H ) -> <. ( ( _I |` B ) o. ( _I |` B ) ) , ( O ( +g ` ( Scalar ` U ) ) O ) >. = <. ( _I |` B ) , O >. ) |
28 |
15 27
|
eqtrd |
|- ( ( K e. HL /\ W e. H ) -> ( <. ( _I |` B ) , O >. ( +g ` U ) <. ( _I |` B ) , O >. ) = <. ( _I |` B ) , O >. ) |
29 |
2 4 7
|
dvhlmod |
|- ( ( K e. HL /\ W e. H ) -> U e. LMod ) |
30 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
31 |
2 3 9 4 30
|
dvhelvbasei |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( _I |` B ) e. T /\ O e. ( ( TEndo ` K ) ` W ) ) ) -> <. ( _I |` B ) , O >. e. ( Base ` U ) ) |
32 |
7 8 10 31
|
syl12anc |
|- ( ( K e. HL /\ W e. H ) -> <. ( _I |` B ) , O >. e. ( Base ` U ) ) |
33 |
30 12 5
|
lmod0vid |
|- ( ( U e. LMod /\ <. ( _I |` B ) , O >. e. ( Base ` U ) ) -> ( ( <. ( _I |` B ) , O >. ( +g ` U ) <. ( _I |` B ) , O >. ) = <. ( _I |` B ) , O >. <-> .0. = <. ( _I |` B ) , O >. ) ) |
34 |
29 32 33
|
syl2anc |
|- ( ( K e. HL /\ W e. H ) -> ( ( <. ( _I |` B ) , O >. ( +g ` U ) <. ( _I |` B ) , O >. ) = <. ( _I |` B ) , O >. <-> .0. = <. ( _I |` B ) , O >. ) ) |
35 |
28 34
|
mpbid |
|- ( ( K e. HL /\ W e. H ) -> .0. = <. ( _I |` B ) , O >. ) |