Step |
Hyp |
Ref |
Expression |
1 |
|
dvhvadd.h |
|- H = ( LHyp ` K ) |
2 |
|
dvhvadd.t |
|- T = ( ( LTrn ` K ) ` W ) |
3 |
|
dvhvadd.e |
|- E = ( ( TEndo ` K ) ` W ) |
4 |
|
dvhvadd.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
dvhvadd.f |
|- D = ( Scalar ` U ) |
6 |
|
dvhvadd.s |
|- .+ = ( +g ` U ) |
7 |
|
dvhvadd.p |
|- .+^ = ( +g ` D ) |
8 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> ( K e. HL /\ W e. H ) ) |
9 |
|
opelxpi |
|- ( ( F e. T /\ Q e. E ) -> <. F , Q >. e. ( T X. E ) ) |
10 |
9
|
3ad2ant2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> <. F , Q >. e. ( T X. E ) ) |
11 |
|
opelxpi |
|- ( ( G e. T /\ R e. E ) -> <. G , R >. e. ( T X. E ) ) |
12 |
11
|
3ad2ant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> <. G , R >. e. ( T X. E ) ) |
13 |
1 2 3 4 5 6 7
|
dvhvadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( <. F , Q >. e. ( T X. E ) /\ <. G , R >. e. ( T X. E ) ) ) -> ( <. F , Q >. .+ <. G , R >. ) = <. ( ( 1st ` <. F , Q >. ) o. ( 1st ` <. G , R >. ) ) , ( ( 2nd ` <. F , Q >. ) .+^ ( 2nd ` <. G , R >. ) ) >. ) |
14 |
8 10 12 13
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> ( <. F , Q >. .+ <. G , R >. ) = <. ( ( 1st ` <. F , Q >. ) o. ( 1st ` <. G , R >. ) ) , ( ( 2nd ` <. F , Q >. ) .+^ ( 2nd ` <. G , R >. ) ) >. ) |
15 |
|
op1stg |
|- ( ( F e. T /\ Q e. E ) -> ( 1st ` <. F , Q >. ) = F ) |
16 |
15
|
3ad2ant2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> ( 1st ` <. F , Q >. ) = F ) |
17 |
|
op1stg |
|- ( ( G e. T /\ R e. E ) -> ( 1st ` <. G , R >. ) = G ) |
18 |
17
|
3ad2ant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> ( 1st ` <. G , R >. ) = G ) |
19 |
16 18
|
coeq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> ( ( 1st ` <. F , Q >. ) o. ( 1st ` <. G , R >. ) ) = ( F o. G ) ) |
20 |
|
op2ndg |
|- ( ( F e. T /\ Q e. E ) -> ( 2nd ` <. F , Q >. ) = Q ) |
21 |
20
|
3ad2ant2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> ( 2nd ` <. F , Q >. ) = Q ) |
22 |
|
op2ndg |
|- ( ( G e. T /\ R e. E ) -> ( 2nd ` <. G , R >. ) = R ) |
23 |
22
|
3ad2ant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> ( 2nd ` <. G , R >. ) = R ) |
24 |
21 23
|
oveq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> ( ( 2nd ` <. F , Q >. ) .+^ ( 2nd ` <. G , R >. ) ) = ( Q .+^ R ) ) |
25 |
19 24
|
opeq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> <. ( ( 1st ` <. F , Q >. ) o. ( 1st ` <. G , R >. ) ) , ( ( 2nd ` <. F , Q >. ) .+^ ( 2nd ` <. G , R >. ) ) >. = <. ( F o. G ) , ( Q .+^ R ) >. ) |
26 |
14 25
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> ( <. F , Q >. .+ <. G , R >. ) = <. ( F o. G ) , ( Q .+^ R ) >. ) |