Metamath Proof Explorer


Theorem dvhopvadd

Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 21-Feb-2014) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses dvhvadd.h H = LHyp K
dvhvadd.t T = LTrn K W
dvhvadd.e E = TEndo K W
dvhvadd.u U = DVecH K W
dvhvadd.f D = Scalar U
dvhvadd.s + ˙ = + U
dvhvadd.p ˙ = + D
Assertion dvhopvadd K HL W H F T Q E G T R E F Q + ˙ G R = F G Q ˙ R

Proof

Step Hyp Ref Expression
1 dvhvadd.h H = LHyp K
2 dvhvadd.t T = LTrn K W
3 dvhvadd.e E = TEndo K W
4 dvhvadd.u U = DVecH K W
5 dvhvadd.f D = Scalar U
6 dvhvadd.s + ˙ = + U
7 dvhvadd.p ˙ = + D
8 simp1 K HL W H F T Q E G T R E K HL W H
9 opelxpi F T Q E F Q T × E
10 9 3ad2ant2 K HL W H F T Q E G T R E F Q T × E
11 opelxpi G T R E G R T × E
12 11 3ad2ant3 K HL W H F T Q E G T R E G R T × E
13 1 2 3 4 5 6 7 dvhvadd K HL W H F Q T × E G R T × E F Q + ˙ G R = 1 st F Q 1 st G R 2 nd F Q ˙ 2 nd G R
14 8 10 12 13 syl12anc K HL W H F T Q E G T R E F Q + ˙ G R = 1 st F Q 1 st G R 2 nd F Q ˙ 2 nd G R
15 op1stg F T Q E 1 st F Q = F
16 15 3ad2ant2 K HL W H F T Q E G T R E 1 st F Q = F
17 op1stg G T R E 1 st G R = G
18 17 3ad2ant3 K HL W H F T Q E G T R E 1 st G R = G
19 16 18 coeq12d K HL W H F T Q E G T R E 1 st F Q 1 st G R = F G
20 op2ndg F T Q E 2 nd F Q = Q
21 20 3ad2ant2 K HL W H F T Q E G T R E 2 nd F Q = Q
22 op2ndg G T R E 2 nd G R = R
23 22 3ad2ant3 K HL W H F T Q E G T R E 2 nd G R = R
24 21 23 oveq12d K HL W H F T Q E G T R E 2 nd F Q ˙ 2 nd G R = Q ˙ R
25 19 24 opeq12d K HL W H F T Q E G T R E 1 st F Q 1 st G R 2 nd F Q ˙ 2 nd G R = F G Q ˙ R
26 14 25 eqtrd K HL W H F T Q E G T R E F Q + ˙ G R = F G Q ˙ R