Metamath Proof Explorer


Theorem dvhopvadd

Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 21-Feb-2014) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses dvhvadd.h H=LHypK
dvhvadd.t T=LTrnKW
dvhvadd.e E=TEndoKW
dvhvadd.u U=DVecHKW
dvhvadd.f D=ScalarU
dvhvadd.s +˙=+U
dvhvadd.p ˙=+D
Assertion dvhopvadd KHLWHFTQEGTREFQ+˙GR=FGQ˙R

Proof

Step Hyp Ref Expression
1 dvhvadd.h H=LHypK
2 dvhvadd.t T=LTrnKW
3 dvhvadd.e E=TEndoKW
4 dvhvadd.u U=DVecHKW
5 dvhvadd.f D=ScalarU
6 dvhvadd.s +˙=+U
7 dvhvadd.p ˙=+D
8 simp1 KHLWHFTQEGTREKHLWH
9 opelxpi FTQEFQT×E
10 9 3ad2ant2 KHLWHFTQEGTREFQT×E
11 opelxpi GTREGRT×E
12 11 3ad2ant3 KHLWHFTQEGTREGRT×E
13 1 2 3 4 5 6 7 dvhvadd KHLWHFQT×EGRT×EFQ+˙GR=1stFQ1stGR2ndFQ˙2ndGR
14 8 10 12 13 syl12anc KHLWHFTQEGTREFQ+˙GR=1stFQ1stGR2ndFQ˙2ndGR
15 op1stg FTQE1stFQ=F
16 15 3ad2ant2 KHLWHFTQEGTRE1stFQ=F
17 op1stg GTRE1stGR=G
18 17 3ad2ant3 KHLWHFTQEGTRE1stGR=G
19 16 18 coeq12d KHLWHFTQEGTRE1stFQ1stGR=FG
20 op2ndg FTQE2ndFQ=Q
21 20 3ad2ant2 KHLWHFTQEGTRE2ndFQ=Q
22 op2ndg GTRE2ndGR=R
23 22 3ad2ant3 KHLWHFTQEGTRE2ndGR=R
24 21 23 oveq12d KHLWHFTQEGTRE2ndFQ˙2ndGR=Q˙R
25 19 24 opeq12d KHLWHFTQEGTRE1stFQ1stGR2ndFQ˙2ndGR=FGQ˙R
26 14 25 eqtrd KHLWHFTQEGTREFQ+˙GR=FGQ˙R