Metamath Proof Explorer


Theorem dvhopvadd2

Description: The vector sum operation for the constructed full vector space H. TODO: check if this will shorten proofs that use dvhopvadd and/or dvhfplusr . (Contributed by NM, 26-Sep-2014)

Ref Expression
Hypotheses dvhopvadd2.h H=LHypK
dvhopvadd2.t T=LTrnKW
dvhopvadd2.e E=TEndoKW
dvhopvadd2.p +˙=sE,tEfTsftf
dvhopvadd2.u U=DVecHKW
dvhopvadd2.s ˙=+U
Assertion dvhopvadd2 KHLWHFTQEGTREFQ˙GR=FGQ+˙R

Proof

Step Hyp Ref Expression
1 dvhopvadd2.h H=LHypK
2 dvhopvadd2.t T=LTrnKW
3 dvhopvadd2.e E=TEndoKW
4 dvhopvadd2.p +˙=sE,tEfTsftf
5 dvhopvadd2.u U=DVecHKW
6 dvhopvadd2.s ˙=+U
7 eqid ScalarU=ScalarU
8 eqid +ScalarU=+ScalarU
9 1 2 3 5 7 6 8 dvhopvadd KHLWHFTQEGTREFQ˙GR=FGQ+ScalarUR
10 1 2 3 5 7 4 8 dvhfplusr KHLWH+ScalarU=+˙
11 10 3ad2ant1 KHLWHFTQEGTRE+ScalarU=+˙
12 11 oveqd KHLWHFTQEGTREQ+ScalarUR=Q+˙R
13 12 opeq2d KHLWHFTQEGTREFGQ+ScalarUR=FGQ+˙R
14 9 13 eqtrd KHLWHFTQEGTREFQ˙GR=FGQ+˙R