Metamath Proof Explorer


Theorem dvhopvadd2

Description: The vector sum operation for the constructed full vector space H. TODO: check if this will shorten proofs that use dvhopvadd and/or dvhfplusr . (Contributed by NM, 26-Sep-2014)

Ref Expression
Hypotheses dvhopvadd2.h H = LHyp K
dvhopvadd2.t T = LTrn K W
dvhopvadd2.e E = TEndo K W
dvhopvadd2.p + ˙ = s E , t E f T s f t f
dvhopvadd2.u U = DVecH K W
dvhopvadd2.s ˙ = + U
Assertion dvhopvadd2 K HL W H F T Q E G T R E F Q ˙ G R = F G Q + ˙ R

Proof

Step Hyp Ref Expression
1 dvhopvadd2.h H = LHyp K
2 dvhopvadd2.t T = LTrn K W
3 dvhopvadd2.e E = TEndo K W
4 dvhopvadd2.p + ˙ = s E , t E f T s f t f
5 dvhopvadd2.u U = DVecH K W
6 dvhopvadd2.s ˙ = + U
7 eqid Scalar U = Scalar U
8 eqid + Scalar U = + Scalar U
9 1 2 3 5 7 6 8 dvhopvadd K HL W H F T Q E G T R E F Q ˙ G R = F G Q + Scalar U R
10 1 2 3 5 7 4 8 dvhfplusr K HL W H + Scalar U = + ˙
11 10 3ad2ant1 K HL W H F T Q E G T R E + Scalar U = + ˙
12 11 oveqd K HL W H F T Q E G T R E Q + Scalar U R = Q + ˙ R
13 12 opeq2d K HL W H F T Q E G T R E F G Q + Scalar U R = F G Q + ˙ R
14 9 13 eqtrd K HL W H F T Q E G T R E F Q ˙ G R = F G Q + ˙ R