Metamath Proof Explorer


Theorem dvhvaddcl

Description: Closure of the vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013) (Revised by Mario Carneiro, 23-Jun-2014)

Ref Expression
Hypotheses dvhvaddcl.h H = LHyp K
dvhvaddcl.t T = LTrn K W
dvhvaddcl.e E = TEndo K W
dvhvaddcl.u U = DVecH K W
dvhvaddcl.d D = Scalar U
dvhvaddcl.p ˙ = + D
dvhvaddcl.a + ˙ = + U
Assertion dvhvaddcl K HL W H F T × E G T × E F + ˙ G T × E

Proof

Step Hyp Ref Expression
1 dvhvaddcl.h H = LHyp K
2 dvhvaddcl.t T = LTrn K W
3 dvhvaddcl.e E = TEndo K W
4 dvhvaddcl.u U = DVecH K W
5 dvhvaddcl.d D = Scalar U
6 dvhvaddcl.p ˙ = + D
7 dvhvaddcl.a + ˙ = + U
8 1 2 3 4 5 7 6 dvhvadd K HL W H F T × E G T × E F + ˙ G = 1 st F 1 st G 2 nd F ˙ 2 nd G
9 simpl K HL W H F T × E G T × E K HL W H
10 xp1st F T × E 1 st F T
11 10 ad2antrl K HL W H F T × E G T × E 1 st F T
12 xp1st G T × E 1 st G T
13 12 ad2antll K HL W H F T × E G T × E 1 st G T
14 1 2 ltrnco K HL W H 1 st F T 1 st G T 1 st F 1 st G T
15 9 11 13 14 syl3anc K HL W H F T × E G T × E 1 st F 1 st G T
16 eqid a E , b E c T a c b c = a E , b E c T a c b c
17 1 2 3 4 5 16 6 dvhfplusr K HL W H ˙ = a E , b E c T a c b c
18 17 adantr K HL W H F T × E G T × E ˙ = a E , b E c T a c b c
19 18 oveqd K HL W H F T × E G T × E 2 nd F ˙ 2 nd G = 2 nd F a E , b E c T a c b c 2 nd G
20 xp2nd F T × E 2 nd F E
21 20 ad2antrl K HL W H F T × E G T × E 2 nd F E
22 xp2nd G T × E 2 nd G E
23 22 ad2antll K HL W H F T × E G T × E 2 nd G E
24 1 2 3 16 tendoplcl K HL W H 2 nd F E 2 nd G E 2 nd F a E , b E c T a c b c 2 nd G E
25 9 21 23 24 syl3anc K HL W H F T × E G T × E 2 nd F a E , b E c T a c b c 2 nd G E
26 19 25 eqeltrd K HL W H F T × E G T × E 2 nd F ˙ 2 nd G E
27 opelxpi 1 st F 1 st G T 2 nd F ˙ 2 nd G E 1 st F 1 st G 2 nd F ˙ 2 nd G T × E
28 15 26 27 syl2anc K HL W H F T × E G T × E 1 st F 1 st G 2 nd F ˙ 2 nd G T × E
29 8 28 eqeltrd K HL W H F T × E G T × E F + ˙ G T × E