Metamath Proof Explorer


Theorem tendoplcl

Description: Endomorphism sum is a trace-preserving endomorphism. (Contributed by NM, 10-Jun-2013)

Ref Expression
Hypotheses tendopl.h H = LHyp K
tendopl.t T = LTrn K W
tendopl.e E = TEndo K W
tendopl.p P = s E , t E f T s f t f
Assertion tendoplcl K HL W H U E V E U P V E

Proof

Step Hyp Ref Expression
1 tendopl.h H = LHyp K
2 tendopl.t T = LTrn K W
3 tendopl.e E = TEndo K W
4 tendopl.p P = s E , t E f T s f t f
5 eqid K = K
6 eqid trL K W = trL K W
7 simp1 K HL W H U E V E K HL W H
8 simpl1 K HL W H U E V E g T K HL W H
9 simpl2 K HL W H U E V E g T U E
10 simpr K HL W H U E V E g T g T
11 1 2 3 tendocl K HL W H U E g T U g T
12 8 9 10 11 syl3anc K HL W H U E V E g T U g T
13 simpl3 K HL W H U E V E g T V E
14 1 2 3 tendocl K HL W H V E g T V g T
15 8 13 10 14 syl3anc K HL W H U E V E g T V g T
16 1 2 ltrnco K HL W H U g T V g T U g V g T
17 8 12 15 16 syl3anc K HL W H U E V E g T U g V g T
18 17 fmpttd K HL W H U E V E g T U g V g : T T
19 4 2 tendopl U E V E U P V = g T U g V g
20 19 3adant1 K HL W H U E V E U P V = g T U g V g
21 20 feq1d K HL W H U E V E U P V : T T g T U g V g : T T
22 18 21 mpbird K HL W H U E V E U P V : T T
23 simp11 K HL W H U E V E h T i T K HL W H
24 simp12 K HL W H U E V E h T i T U E
25 simp13 K HL W H U E V E h T i T V E
26 3simpc K HL W H U E V E h T i T h T i T
27 1 2 3 4 tendoplco2 K HL W H U E V E h T i T U P V h i = U P V h U P V i
28 23 24 25 26 27 syl121anc K HL W H U E V E h T i T U P V h i = U P V h U P V i
29 simpl1 K HL W H U E V E h T K HL W H
30 simpl2 K HL W H U E V E h T U E
31 simpl3 K HL W H U E V E h T V E
32 simpr K HL W H U E V E h T h T
33 1 2 3 4 5 6 tendopltp K HL W H U E V E h T trL K W U P V h K trL K W h
34 29 30 31 32 33 syl121anc K HL W H U E V E h T trL K W U P V h K trL K W h
35 5 1 2 6 3 7 22 28 34 istendod K HL W H U E V E U P V E