Metamath Proof Explorer


Theorem istendod

Description: Deduce the predicate "is a trace-preserving endomorphism". (Contributed by NM, 9-Jun-2013)

Ref Expression
Hypotheses tendoset.l ˙ = K
tendoset.h H = LHyp K
tendoset.t T = LTrn K W
tendoset.r R = trL K W
tendoset.e E = TEndo K W
istendod.1 φ K V W H
istendod.2 φ S : T T
istendod.3 φ f T g T S f g = S f S g
istendod.4 φ f T R S f ˙ R f
Assertion istendod φ S E

Proof

Step Hyp Ref Expression
1 tendoset.l ˙ = K
2 tendoset.h H = LHyp K
3 tendoset.t T = LTrn K W
4 tendoset.r R = trL K W
5 tendoset.e E = TEndo K W
6 istendod.1 φ K V W H
7 istendod.2 φ S : T T
8 istendod.3 φ f T g T S f g = S f S g
9 istendod.4 φ f T R S f ˙ R f
10 8 3expb φ f T g T S f g = S f S g
11 10 ralrimivva φ f T g T S f g = S f S g
12 9 ralrimiva φ f T R S f ˙ R f
13 1 2 3 4 5 istendo K V W H S E S : T T f T g T S f g = S f S g f T R S f ˙ R f
14 6 13 syl φ S E S : T T f T g T S f g = S f S g f T R S f ˙ R f
15 7 11 12 14 mpbir3and φ S E