Metamath Proof Explorer


Theorem istendod

Description: Deduce the predicate "is a trace-preserving endomorphism". (Contributed by NM, 9-Jun-2013)

Ref Expression
Hypotheses tendoset.l = ( le ‘ 𝐾 )
tendoset.h 𝐻 = ( LHyp ‘ 𝐾 )
tendoset.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
tendoset.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
tendoset.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
istendod.1 ( 𝜑 → ( 𝐾𝑉𝑊𝐻 ) )
istendod.2 ( 𝜑𝑆 : 𝑇𝑇 )
istendod.3 ( ( 𝜑𝑓𝑇𝑔𝑇 ) → ( 𝑆 ‘ ( 𝑓𝑔 ) ) = ( ( 𝑆𝑓 ) ∘ ( 𝑆𝑔 ) ) )
istendod.4 ( ( 𝜑𝑓𝑇 ) → ( 𝑅 ‘ ( 𝑆𝑓 ) ) ( 𝑅𝑓 ) )
Assertion istendod ( 𝜑𝑆𝐸 )

Proof

Step Hyp Ref Expression
1 tendoset.l = ( le ‘ 𝐾 )
2 tendoset.h 𝐻 = ( LHyp ‘ 𝐾 )
3 tendoset.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
4 tendoset.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
5 tendoset.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
6 istendod.1 ( 𝜑 → ( 𝐾𝑉𝑊𝐻 ) )
7 istendod.2 ( 𝜑𝑆 : 𝑇𝑇 )
8 istendod.3 ( ( 𝜑𝑓𝑇𝑔𝑇 ) → ( 𝑆 ‘ ( 𝑓𝑔 ) ) = ( ( 𝑆𝑓 ) ∘ ( 𝑆𝑔 ) ) )
9 istendod.4 ( ( 𝜑𝑓𝑇 ) → ( 𝑅 ‘ ( 𝑆𝑓 ) ) ( 𝑅𝑓 ) )
10 8 3expb ( ( 𝜑 ∧ ( 𝑓𝑇𝑔𝑇 ) ) → ( 𝑆 ‘ ( 𝑓𝑔 ) ) = ( ( 𝑆𝑓 ) ∘ ( 𝑆𝑔 ) ) )
11 10 ralrimivva ( 𝜑 → ∀ 𝑓𝑇𝑔𝑇 ( 𝑆 ‘ ( 𝑓𝑔 ) ) = ( ( 𝑆𝑓 ) ∘ ( 𝑆𝑔 ) ) )
12 9 ralrimiva ( 𝜑 → ∀ 𝑓𝑇 ( 𝑅 ‘ ( 𝑆𝑓 ) ) ( 𝑅𝑓 ) )
13 1 2 3 4 5 istendo ( ( 𝐾𝑉𝑊𝐻 ) → ( 𝑆𝐸 ↔ ( 𝑆 : 𝑇𝑇 ∧ ∀ 𝑓𝑇𝑔𝑇 ( 𝑆 ‘ ( 𝑓𝑔 ) ) = ( ( 𝑆𝑓 ) ∘ ( 𝑆𝑔 ) ) ∧ ∀ 𝑓𝑇 ( 𝑅 ‘ ( 𝑆𝑓 ) ) ( 𝑅𝑓 ) ) ) )
14 6 13 syl ( 𝜑 → ( 𝑆𝐸 ↔ ( 𝑆 : 𝑇𝑇 ∧ ∀ 𝑓𝑇𝑔𝑇 ( 𝑆 ‘ ( 𝑓𝑔 ) ) = ( ( 𝑆𝑓 ) ∘ ( 𝑆𝑔 ) ) ∧ ∀ 𝑓𝑇 ( 𝑅 ‘ ( 𝑆𝑓 ) ) ( 𝑅𝑓 ) ) ) )
15 7 11 12 14 mpbir3and ( 𝜑𝑆𝐸 )