Step |
Hyp |
Ref |
Expression |
1 |
|
tendoset.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
tendoset.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
tendoset.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
tendoset.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
tendoset.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
istendod.1 |
⊢ ( 𝜑 → ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
istendod.2 |
⊢ ( 𝜑 → 𝑆 : 𝑇 ⟶ 𝑇 ) |
8 |
|
istendod.3 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇 ) → ( 𝑆 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑆 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑔 ) ) ) |
9 |
|
istendod.4 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑇 ) → ( 𝑅 ‘ ( 𝑆 ‘ 𝑓 ) ) ≤ ( 𝑅 ‘ 𝑓 ) ) |
10 |
8
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇 ) ) → ( 𝑆 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑆 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑔 ) ) ) |
11 |
10
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝑇 ∀ 𝑔 ∈ 𝑇 ( 𝑆 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑆 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑔 ) ) ) |
12 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝑇 ( 𝑅 ‘ ( 𝑆 ‘ 𝑓 ) ) ≤ ( 𝑅 ‘ 𝑓 ) ) |
13 |
1 2 3 4 5
|
istendo |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝑆 ∈ 𝐸 ↔ ( 𝑆 : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑓 ∈ 𝑇 ∀ 𝑔 ∈ 𝑇 ( 𝑆 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑆 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑔 ) ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑅 ‘ ( 𝑆 ‘ 𝑓 ) ) ≤ ( 𝑅 ‘ 𝑓 ) ) ) ) |
14 |
6 13
|
syl |
⊢ ( 𝜑 → ( 𝑆 ∈ 𝐸 ↔ ( 𝑆 : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑓 ∈ 𝑇 ∀ 𝑔 ∈ 𝑇 ( 𝑆 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑆 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑔 ) ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑅 ‘ ( 𝑆 ‘ 𝑓 ) ) ≤ ( 𝑅 ‘ 𝑓 ) ) ) ) |
15 |
7 11 12 14
|
mpbir3and |
⊢ ( 𝜑 → 𝑆 ∈ 𝐸 ) |