Step |
Hyp |
Ref |
Expression |
1 |
|
tendoset.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
tendoset.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
tendoset.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
tendoset.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
tendoset.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
1 2 3 4 5
|
tendoset |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝐸 = { 𝑠 ∣ ( 𝑠 : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑓 ∈ 𝑇 ∀ 𝑔 ∈ 𝑇 ( 𝑠 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑠 ‘ 𝑔 ) ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑅 ‘ ( 𝑠 ‘ 𝑓 ) ) ≤ ( 𝑅 ‘ 𝑓 ) ) } ) |
7 |
6
|
eleq2d |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝑆 ∈ 𝐸 ↔ 𝑆 ∈ { 𝑠 ∣ ( 𝑠 : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑓 ∈ 𝑇 ∀ 𝑔 ∈ 𝑇 ( 𝑠 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑠 ‘ 𝑔 ) ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑅 ‘ ( 𝑠 ‘ 𝑓 ) ) ≤ ( 𝑅 ‘ 𝑓 ) ) } ) ) |
8 |
3
|
fvexi |
⊢ 𝑇 ∈ V |
9 |
|
fex |
⊢ ( ( 𝑆 : 𝑇 ⟶ 𝑇 ∧ 𝑇 ∈ V ) → 𝑆 ∈ V ) |
10 |
8 9
|
mpan2 |
⊢ ( 𝑆 : 𝑇 ⟶ 𝑇 → 𝑆 ∈ V ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( 𝑆 : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑓 ∈ 𝑇 ∀ 𝑔 ∈ 𝑇 ( 𝑆 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑆 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑔 ) ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑅 ‘ ( 𝑆 ‘ 𝑓 ) ) ≤ ( 𝑅 ‘ 𝑓 ) ) → 𝑆 ∈ V ) |
12 |
|
feq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 : 𝑇 ⟶ 𝑇 ↔ 𝑆 : 𝑇 ⟶ 𝑇 ) ) |
13 |
|
fveq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( 𝑆 ‘ ( 𝑓 ∘ 𝑔 ) ) ) |
14 |
|
fveq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 ‘ 𝑓 ) = ( 𝑆 ‘ 𝑓 ) ) |
15 |
|
fveq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 ‘ 𝑔 ) = ( 𝑆 ‘ 𝑔 ) ) |
16 |
14 15
|
coeq12d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑠 ‘ 𝑔 ) ) = ( ( 𝑆 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑔 ) ) ) |
17 |
13 16
|
eqeq12d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑠 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑠 ‘ 𝑔 ) ) ↔ ( 𝑆 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑆 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑔 ) ) ) ) |
18 |
17
|
2ralbidv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑓 ∈ 𝑇 ∀ 𝑔 ∈ 𝑇 ( 𝑠 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑠 ‘ 𝑔 ) ) ↔ ∀ 𝑓 ∈ 𝑇 ∀ 𝑔 ∈ 𝑇 ( 𝑆 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑆 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑔 ) ) ) ) |
19 |
14
|
fveq2d |
⊢ ( 𝑠 = 𝑆 → ( 𝑅 ‘ ( 𝑠 ‘ 𝑓 ) ) = ( 𝑅 ‘ ( 𝑆 ‘ 𝑓 ) ) ) |
20 |
19
|
breq1d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑅 ‘ ( 𝑠 ‘ 𝑓 ) ) ≤ ( 𝑅 ‘ 𝑓 ) ↔ ( 𝑅 ‘ ( 𝑆 ‘ 𝑓 ) ) ≤ ( 𝑅 ‘ 𝑓 ) ) ) |
21 |
20
|
ralbidv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑓 ∈ 𝑇 ( 𝑅 ‘ ( 𝑠 ‘ 𝑓 ) ) ≤ ( 𝑅 ‘ 𝑓 ) ↔ ∀ 𝑓 ∈ 𝑇 ( 𝑅 ‘ ( 𝑆 ‘ 𝑓 ) ) ≤ ( 𝑅 ‘ 𝑓 ) ) ) |
22 |
12 18 21
|
3anbi123d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑠 : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑓 ∈ 𝑇 ∀ 𝑔 ∈ 𝑇 ( 𝑠 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑠 ‘ 𝑔 ) ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑅 ‘ ( 𝑠 ‘ 𝑓 ) ) ≤ ( 𝑅 ‘ 𝑓 ) ) ↔ ( 𝑆 : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑓 ∈ 𝑇 ∀ 𝑔 ∈ 𝑇 ( 𝑆 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑆 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑔 ) ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑅 ‘ ( 𝑆 ‘ 𝑓 ) ) ≤ ( 𝑅 ‘ 𝑓 ) ) ) ) |
23 |
11 22
|
elab3 |
⊢ ( 𝑆 ∈ { 𝑠 ∣ ( 𝑠 : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑓 ∈ 𝑇 ∀ 𝑔 ∈ 𝑇 ( 𝑠 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑠 ‘ 𝑔 ) ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑅 ‘ ( 𝑠 ‘ 𝑓 ) ) ≤ ( 𝑅 ‘ 𝑓 ) ) } ↔ ( 𝑆 : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑓 ∈ 𝑇 ∀ 𝑔 ∈ 𝑇 ( 𝑆 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑆 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑔 ) ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑅 ‘ ( 𝑆 ‘ 𝑓 ) ) ≤ ( 𝑅 ‘ 𝑓 ) ) ) |
24 |
7 23
|
bitrdi |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝑆 ∈ 𝐸 ↔ ( 𝑆 : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑓 ∈ 𝑇 ∀ 𝑔 ∈ 𝑇 ( 𝑆 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑆 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑔 ) ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑅 ‘ ( 𝑆 ‘ 𝑓 ) ) ≤ ( 𝑅 ‘ 𝑓 ) ) ) ) |