Metamath Proof Explorer


Theorem istendo

Description: The predicate "is a trace-preserving endomorphism". Similar to definition of trace-preserving endomorphism in Crawley p. 117, penultimate line. (Contributed by NM, 8-Jun-2013)

Ref Expression
Hypotheses tendoset.l ˙ = K
tendoset.h H = LHyp K
tendoset.t T = LTrn K W
tendoset.r R = trL K W
tendoset.e E = TEndo K W
Assertion istendo K V W H S E S : T T f T g T S f g = S f S g f T R S f ˙ R f

Proof

Step Hyp Ref Expression
1 tendoset.l ˙ = K
2 tendoset.h H = LHyp K
3 tendoset.t T = LTrn K W
4 tendoset.r R = trL K W
5 tendoset.e E = TEndo K W
6 1 2 3 4 5 tendoset K V W H E = s | s : T T f T g T s f g = s f s g f T R s f ˙ R f
7 6 eleq2d K V W H S E S s | s : T T f T g T s f g = s f s g f T R s f ˙ R f
8 3 fvexi T V
9 fex S : T T T V S V
10 8 9 mpan2 S : T T S V
11 10 3ad2ant1 S : T T f T g T S f g = S f S g f T R S f ˙ R f S V
12 feq1 s = S s : T T S : T T
13 fveq1 s = S s f g = S f g
14 fveq1 s = S s f = S f
15 fveq1 s = S s g = S g
16 14 15 coeq12d s = S s f s g = S f S g
17 13 16 eqeq12d s = S s f g = s f s g S f g = S f S g
18 17 2ralbidv s = S f T g T s f g = s f s g f T g T S f g = S f S g
19 14 fveq2d s = S R s f = R S f
20 19 breq1d s = S R s f ˙ R f R S f ˙ R f
21 20 ralbidv s = S f T R s f ˙ R f f T R S f ˙ R f
22 12 18 21 3anbi123d s = S s : T T f T g T s f g = s f s g f T R s f ˙ R f S : T T f T g T S f g = S f S g f T R S f ˙ R f
23 11 22 elab3 S s | s : T T f T g T s f g = s f s g f T R s f ˙ R f S : T T f T g T S f g = S f S g f T R S f ˙ R f
24 7 23 bitrdi K V W H S E S : T T f T g T S f g = S f S g f T R S f ˙ R f