Metamath Proof Explorer


Theorem tendotp

Description: Trace-preserving property of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013)

Ref Expression
Hypotheses tendoset.l ˙ = K
tendoset.h H = LHyp K
tendoset.t T = LTrn K W
tendoset.r R = trL K W
tendoset.e E = TEndo K W
Assertion tendotp K V W H S E F T R S F ˙ R F

Proof

Step Hyp Ref Expression
1 tendoset.l ˙ = K
2 tendoset.h H = LHyp K
3 tendoset.t T = LTrn K W
4 tendoset.r R = trL K W
5 tendoset.e E = TEndo K W
6 1 2 3 4 5 istendo K V W H S E S : T T f T g T S f g = S f S g f T R S f ˙ R f
7 2fveq3 f = F R S f = R S F
8 fveq2 f = F R f = R F
9 7 8 breq12d f = F R S f ˙ R f R S F ˙ R F
10 9 rspccv f T R S f ˙ R f F T R S F ˙ R F
11 10 3ad2ant3 S : T T f T g T S f g = S f S g f T R S f ˙ R f F T R S F ˙ R F
12 6 11 syl6bi K V W H S E F T R S F ˙ R F
13 12 3imp K V W H S E F T R S F ˙ R F