| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tendoset.l |
|- .<_ = ( le ` K ) |
| 2 |
|
tendoset.h |
|- H = ( LHyp ` K ) |
| 3 |
|
tendoset.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 4 |
|
tendoset.r |
|- R = ( ( trL ` K ) ` W ) |
| 5 |
|
tendoset.e |
|- E = ( ( TEndo ` K ) ` W ) |
| 6 |
1 2 3 4 5
|
istendo |
|- ( ( K e. V /\ W e. H ) -> ( S e. E <-> ( S : T --> T /\ A. f e. T A. g e. T ( S ` ( f o. g ) ) = ( ( S ` f ) o. ( S ` g ) ) /\ A. f e. T ( R ` ( S ` f ) ) .<_ ( R ` f ) ) ) ) |
| 7 |
|
2fveq3 |
|- ( f = F -> ( R ` ( S ` f ) ) = ( R ` ( S ` F ) ) ) |
| 8 |
|
fveq2 |
|- ( f = F -> ( R ` f ) = ( R ` F ) ) |
| 9 |
7 8
|
breq12d |
|- ( f = F -> ( ( R ` ( S ` f ) ) .<_ ( R ` f ) <-> ( R ` ( S ` F ) ) .<_ ( R ` F ) ) ) |
| 10 |
9
|
rspccv |
|- ( A. f e. T ( R ` ( S ` f ) ) .<_ ( R ` f ) -> ( F e. T -> ( R ` ( S ` F ) ) .<_ ( R ` F ) ) ) |
| 11 |
10
|
3ad2ant3 |
|- ( ( S : T --> T /\ A. f e. T A. g e. T ( S ` ( f o. g ) ) = ( ( S ` f ) o. ( S ` g ) ) /\ A. f e. T ( R ` ( S ` f ) ) .<_ ( R ` f ) ) -> ( F e. T -> ( R ` ( S ` F ) ) .<_ ( R ` F ) ) ) |
| 12 |
6 11
|
biimtrdi |
|- ( ( K e. V /\ W e. H ) -> ( S e. E -> ( F e. T -> ( R ` ( S ` F ) ) .<_ ( R ` F ) ) ) ) |
| 13 |
12
|
3imp |
|- ( ( ( K e. V /\ W e. H ) /\ S e. E /\ F e. T ) -> ( R ` ( S ` F ) ) .<_ ( R ` F ) ) |