Metamath Proof Explorer


Theorem tendof

Description: Functionality of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013)

Ref Expression
Hypotheses tendof.h 𝐻 = ( LHyp ‘ 𝐾 )
tendof.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
tendof.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
Assertion tendof ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑆𝐸 ) → 𝑆 : 𝑇𝑇 )

Proof

Step Hyp Ref Expression
1 tendof.h 𝐻 = ( LHyp ‘ 𝐾 )
2 tendof.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 tendof.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
5 eqid ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
6 4 1 2 5 3 istendo ( ( 𝐾𝑉𝑊𝐻 ) → ( 𝑆𝐸 ↔ ( 𝑆 : 𝑇𝑇 ∧ ∀ 𝑓𝑇𝑔𝑇 ( 𝑆 ‘ ( 𝑓𝑔 ) ) = ( ( 𝑆𝑓 ) ∘ ( 𝑆𝑔 ) ) ∧ ∀ 𝑓𝑇 ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑆𝑓 ) ) ( le ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ) ) )
7 simp1 ( ( 𝑆 : 𝑇𝑇 ∧ ∀ 𝑓𝑇𝑔𝑇 ( 𝑆 ‘ ( 𝑓𝑔 ) ) = ( ( 𝑆𝑓 ) ∘ ( 𝑆𝑔 ) ) ∧ ∀ 𝑓𝑇 ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑆𝑓 ) ) ( le ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ) → 𝑆 : 𝑇𝑇 )
8 6 7 syl6bi ( ( 𝐾𝑉𝑊𝐻 ) → ( 𝑆𝐸𝑆 : 𝑇𝑇 ) )
9 8 imp ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑆𝐸 ) → 𝑆 : 𝑇𝑇 )