Step |
Hyp |
Ref |
Expression |
1 |
|
tendof.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
tendof.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
tendof.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
5 |
|
eqid |
⊢ ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
4 1 2 5 3
|
istendo |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝑆 ∈ 𝐸 ↔ ( 𝑆 : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑓 ∈ 𝑇 ∀ 𝑔 ∈ 𝑇 ( 𝑆 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑆 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑔 ) ) ∧ ∀ 𝑓 ∈ 𝑇 ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑆 ‘ 𝑓 ) ) ( le ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ) ) ) |
7 |
|
simp1 |
⊢ ( ( 𝑆 : 𝑇 ⟶ 𝑇 ∧ ∀ 𝑓 ∈ 𝑇 ∀ 𝑔 ∈ 𝑇 ( 𝑆 ‘ ( 𝑓 ∘ 𝑔 ) ) = ( ( 𝑆 ‘ 𝑓 ) ∘ ( 𝑆 ‘ 𝑔 ) ) ∧ ∀ 𝑓 ∈ 𝑇 ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑆 ‘ 𝑓 ) ) ( le ‘ 𝐾 ) ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑓 ) ) → 𝑆 : 𝑇 ⟶ 𝑇 ) |
8 |
6 7
|
syl6bi |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝑆 ∈ 𝐸 → 𝑆 : 𝑇 ⟶ 𝑇 ) ) |
9 |
8
|
imp |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ 𝐸 ) → 𝑆 : 𝑇 ⟶ 𝑇 ) |