Step |
Hyp |
Ref |
Expression |
1 |
|
tendof.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
tendof.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
tendof.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) → ∀ 𝑓 ∈ 𝑇 ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) |
5 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
6 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) → 𝑈 ∈ 𝐸 ) |
7 |
1 2 3
|
tendof |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑈 ∈ 𝐸 ) → 𝑈 : 𝑇 ⟶ 𝑇 ) |
8 |
5 6 7
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) → 𝑈 : 𝑇 ⟶ 𝑇 ) |
9 |
8
|
ffnd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) → 𝑈 Fn 𝑇 ) |
10 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) → 𝑉 ∈ 𝐸 ) |
11 |
1 2 3
|
tendof |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑉 ∈ 𝐸 ) → 𝑉 : 𝑇 ⟶ 𝑇 ) |
12 |
5 10 11
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) → 𝑉 : 𝑇 ⟶ 𝑇 ) |
13 |
12
|
ffnd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) → 𝑉 Fn 𝑇 ) |
14 |
|
eqfnfv |
⊢ ( ( 𝑈 Fn 𝑇 ∧ 𝑉 Fn 𝑇 ) → ( 𝑈 = 𝑉 ↔ ∀ 𝑓 ∈ 𝑇 ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ) |
15 |
9 13 14
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) → ( 𝑈 = 𝑉 ↔ ∀ 𝑓 ∈ 𝑇 ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) ) |
16 |
4 15
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ) ∧ ∀ 𝑓 ∈ 𝑇 ( 𝑈 ‘ 𝑓 ) = ( 𝑉 ‘ 𝑓 ) ) → 𝑈 = 𝑉 ) |