Metamath Proof Explorer


Theorem tendoeq1

Description: Condition determining equality of two trace-preserving endomorphisms. (Contributed by NM, 11-Jun-2013)

Ref Expression
Hypotheses tendof.h 𝐻 = ( LHyp ‘ 𝐾 )
tendof.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
tendof.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
Assertion tendoeq1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ ∀ 𝑓𝑇 ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) → 𝑈 = 𝑉 )

Proof

Step Hyp Ref Expression
1 tendof.h 𝐻 = ( LHyp ‘ 𝐾 )
2 tendof.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 tendof.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 simp3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ ∀ 𝑓𝑇 ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) → ∀ 𝑓𝑇 ( 𝑈𝑓 ) = ( 𝑉𝑓 ) )
5 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ ∀ 𝑓𝑇 ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ ∀ 𝑓𝑇 ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) → 𝑈𝐸 )
7 1 2 3 tendof ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑈𝐸 ) → 𝑈 : 𝑇𝑇 )
8 5 6 7 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ ∀ 𝑓𝑇 ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) → 𝑈 : 𝑇𝑇 )
9 8 ffnd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ ∀ 𝑓𝑇 ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) → 𝑈 Fn 𝑇 )
10 simp2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ ∀ 𝑓𝑇 ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) → 𝑉𝐸 )
11 1 2 3 tendof ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑉𝐸 ) → 𝑉 : 𝑇𝑇 )
12 5 10 11 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ ∀ 𝑓𝑇 ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) → 𝑉 : 𝑇𝑇 )
13 12 ffnd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ ∀ 𝑓𝑇 ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) → 𝑉 Fn 𝑇 )
14 eqfnfv ( ( 𝑈 Fn 𝑇𝑉 Fn 𝑇 ) → ( 𝑈 = 𝑉 ↔ ∀ 𝑓𝑇 ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) )
15 9 13 14 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ ∀ 𝑓𝑇 ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) → ( 𝑈 = 𝑉 ↔ ∀ 𝑓𝑇 ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) )
16 4 15 mpbird ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑈𝐸𝑉𝐸 ) ∧ ∀ 𝑓𝑇 ( 𝑈𝑓 ) = ( 𝑉𝑓 ) ) → 𝑈 = 𝑉 )