Metamath Proof Explorer


Theorem tendoeq1

Description: Condition determining equality of two trace-preserving endomorphisms. (Contributed by NM, 11-Jun-2013)

Ref Expression
Hypotheses tendof.h H = LHyp K
tendof.t T = LTrn K W
tendof.e E = TEndo K W
Assertion tendoeq1 K HL W H U E V E f T U f = V f U = V

Proof

Step Hyp Ref Expression
1 tendof.h H = LHyp K
2 tendof.t T = LTrn K W
3 tendof.e E = TEndo K W
4 simp3 K HL W H U E V E f T U f = V f f T U f = V f
5 simp1 K HL W H U E V E f T U f = V f K HL W H
6 simp2l K HL W H U E V E f T U f = V f U E
7 1 2 3 tendof K HL W H U E U : T T
8 5 6 7 syl2anc K HL W H U E V E f T U f = V f U : T T
9 8 ffnd K HL W H U E V E f T U f = V f U Fn T
10 simp2r K HL W H U E V E f T U f = V f V E
11 1 2 3 tendof K HL W H V E V : T T
12 5 10 11 syl2anc K HL W H U E V E f T U f = V f V : T T
13 12 ffnd K HL W H U E V E f T U f = V f V Fn T
14 eqfnfv U Fn T V Fn T U = V f T U f = V f
15 9 13 14 syl2anc K HL W H U E V E f T U f = V f U = V f T U f = V f
16 4 15 mpbird K HL W H U E V E f T U f = V f U = V