Metamath Proof Explorer


Theorem tendovalco

Description: Value of composition of translations in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013)

Ref Expression
Hypotheses tendof.h H = LHyp K
tendof.t T = LTrn K W
tendof.e E = TEndo K W
Assertion tendovalco K V W H S E F T G T S F G = S F S G

Proof

Step Hyp Ref Expression
1 tendof.h H = LHyp K
2 tendof.t T = LTrn K W
3 tendof.e E = TEndo K W
4 eqid K = K
5 eqid trL K W = trL K W
6 4 1 2 5 3 istendo K V W H S E S : T T f T g T S f g = S f S g f T trL K W S f K trL K W f
7 coeq1 f = F f g = F g
8 7 fveq2d f = F S f g = S F g
9 fveq2 f = F S f = S F
10 9 coeq1d f = F S f S g = S F S g
11 8 10 eqeq12d f = F S f g = S f S g S F g = S F S g
12 coeq2 g = G F g = F G
13 12 fveq2d g = G S F g = S F G
14 fveq2 g = G S g = S G
15 14 coeq2d g = G S F S g = S F S G
16 13 15 eqeq12d g = G S F g = S F S g S F G = S F S G
17 11 16 rspc2v F T G T f T g T S f g = S f S g S F G = S F S G
18 17 com12 f T g T S f g = S f S g F T G T S F G = S F S G
19 18 3ad2ant2 S : T T f T g T S f g = S f S g f T trL K W S f K trL K W f F T G T S F G = S F S G
20 6 19 syl6bi K V W H S E F T G T S F G = S F S G
21 20 3impia K V W H S E F T G T S F G = S F S G
22 21 imp K V W H S E F T G T S F G = S F S G