Metamath Proof Explorer


Theorem tendof

Description: Functionality of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013)

Ref Expression
Hypotheses tendof.h H = LHyp K
tendof.t T = LTrn K W
tendof.e E = TEndo K W
Assertion tendof K V W H S E S : T T

Proof

Step Hyp Ref Expression
1 tendof.h H = LHyp K
2 tendof.t T = LTrn K W
3 tendof.e E = TEndo K W
4 eqid K = K
5 eqid trL K W = trL K W
6 4 1 2 5 3 istendo K V W H S E S : T T f T g T S f g = S f S g f T trL K W S f K trL K W f
7 simp1 S : T T f T g T S f g = S f S g f T trL K W S f K trL K W f S : T T
8 6 7 syl6bi K V W H S E S : T T
9 8 imp K V W H S E S : T T