Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
tendof
Next ⟩
tendoeq1
Metamath Proof Explorer
Ascii
Unicode
Theorem
tendof
Description:
Functionality of a trace-preserving endomorphism.
(Contributed by
NM
, 9-Jun-2013)
Ref
Expression
Hypotheses
tendof.h
⊢
H
=
LHyp
⁡
K
tendof.t
⊢
T
=
LTrn
⁡
K
⁡
W
tendof.e
⊢
E
=
TEndo
⁡
K
⁡
W
Assertion
tendof
⊢
K
∈
V
∧
W
∈
H
∧
S
∈
E
→
S
:
T
⟶
T
Proof
Step
Hyp
Ref
Expression
1
tendof.h
⊢
H
=
LHyp
⁡
K
2
tendof.t
⊢
T
=
LTrn
⁡
K
⁡
W
3
tendof.e
⊢
E
=
TEndo
⁡
K
⁡
W
4
eqid
⊢
≤
K
=
≤
K
5
eqid
⊢
trL
⁡
K
⁡
W
=
trL
⁡
K
⁡
W
6
4
1
2
5
3
istendo
⊢
K
∈
V
∧
W
∈
H
→
S
∈
E
↔
S
:
T
⟶
T
∧
∀
f
∈
T
∀
g
∈
T
S
⁡
f
∘
g
=
S
⁡
f
∘
S
⁡
g
∧
∀
f
∈
T
trL
⁡
K
⁡
W
⁡
S
⁡
f
≤
K
trL
⁡
K
⁡
W
⁡
f
7
simp1
⊢
S
:
T
⟶
T
∧
∀
f
∈
T
∀
g
∈
T
S
⁡
f
∘
g
=
S
⁡
f
∘
S
⁡
g
∧
∀
f
∈
T
trL
⁡
K
⁡
W
⁡
S
⁡
f
≤
K
trL
⁡
K
⁡
W
⁡
f
→
S
:
T
⟶
T
8
6
7
syl6bi
⊢
K
∈
V
∧
W
∈
H
→
S
∈
E
→
S
:
T
⟶
T
9
8
imp
⊢
K
∈
V
∧
W
∈
H
∧
S
∈
E
→
S
:
T
⟶
T