Step |
Hyp |
Ref |
Expression |
1 |
|
dvhopvadd2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
dvhopvadd2.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
dvhopvadd2.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dvhopvadd2.p |
⊢ + = ( 𝑠 ∈ 𝐸 , 𝑡 ∈ 𝐸 ↦ ( 𝑓 ∈ 𝑇 ↦ ( ( 𝑠 ‘ 𝑓 ) ∘ ( 𝑡 ‘ 𝑓 ) ) ) ) |
5 |
|
dvhopvadd2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
dvhopvadd2.s |
⊢ ✚ = ( +g ‘ 𝑈 ) |
7 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
8 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑈 ) ) = ( +g ‘ ( Scalar ‘ 𝑈 ) ) |
9 |
1 2 3 5 7 6 8
|
dvhopvadd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸 ) ) → ( 〈 𝐹 , 𝑄 〉 ✚ 〈 𝐺 , 𝑅 〉 ) = 〈 ( 𝐹 ∘ 𝐺 ) , ( 𝑄 ( +g ‘ ( Scalar ‘ 𝑈 ) ) 𝑅 ) 〉 ) |
10 |
1 2 3 5 7 4 8
|
dvhfplusr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( +g ‘ ( Scalar ‘ 𝑈 ) ) = + ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸 ) ) → ( +g ‘ ( Scalar ‘ 𝑈 ) ) = + ) |
12 |
11
|
oveqd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸 ) ) → ( 𝑄 ( +g ‘ ( Scalar ‘ 𝑈 ) ) 𝑅 ) = ( 𝑄 + 𝑅 ) ) |
13 |
12
|
opeq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸 ) ) → 〈 ( 𝐹 ∘ 𝐺 ) , ( 𝑄 ( +g ‘ ( Scalar ‘ 𝑈 ) ) 𝑅 ) 〉 = 〈 ( 𝐹 ∘ 𝐺 ) , ( 𝑄 + 𝑅 ) 〉 ) |
14 |
9 13
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐸 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑅 ∈ 𝐸 ) ) → ( 〈 𝐹 , 𝑄 〉 ✚ 〈 𝐺 , 𝑅 〉 ) = 〈 ( 𝐹 ∘ 𝐺 ) , ( 𝑄 + 𝑅 ) 〉 ) |