Metamath Proof Explorer


Theorem dvhopvadd2

Description: The vector sum operation for the constructed full vector space H. TODO: check if this will shorten proofs that use dvhopvadd and/or dvhfplusr . (Contributed by NM, 26-Sep-2014)

Ref Expression
Hypotheses dvhopvadd2.h 𝐻 = ( LHyp ‘ 𝐾 )
dvhopvadd2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dvhopvadd2.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dvhopvadd2.p + = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑓𝑇 ↦ ( ( 𝑠𝑓 ) ∘ ( 𝑡𝑓 ) ) ) )
dvhopvadd2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dvhopvadd2.s = ( +g𝑈 )
Assertion dvhopvadd2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝑄𝐸 ) ∧ ( 𝐺𝑇𝑅𝐸 ) ) → ( ⟨ 𝐹 , 𝑄𝐺 , 𝑅 ⟩ ) = ⟨ ( 𝐹𝐺 ) , ( 𝑄 + 𝑅 ) ⟩ )

Proof

Step Hyp Ref Expression
1 dvhopvadd2.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvhopvadd2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 dvhopvadd2.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 dvhopvadd2.p + = ( 𝑠𝐸 , 𝑡𝐸 ↦ ( 𝑓𝑇 ↦ ( ( 𝑠𝑓 ) ∘ ( 𝑡𝑓 ) ) ) )
5 dvhopvadd2.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
6 dvhopvadd2.s = ( +g𝑈 )
7 eqid ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 )
8 eqid ( +g ‘ ( Scalar ‘ 𝑈 ) ) = ( +g ‘ ( Scalar ‘ 𝑈 ) )
9 1 2 3 5 7 6 8 dvhopvadd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝑄𝐸 ) ∧ ( 𝐺𝑇𝑅𝐸 ) ) → ( ⟨ 𝐹 , 𝑄𝐺 , 𝑅 ⟩ ) = ⟨ ( 𝐹𝐺 ) , ( 𝑄 ( +g ‘ ( Scalar ‘ 𝑈 ) ) 𝑅 ) ⟩ )
10 1 2 3 5 7 4 8 dvhfplusr ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( +g ‘ ( Scalar ‘ 𝑈 ) ) = + )
11 10 3ad2ant1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝑄𝐸 ) ∧ ( 𝐺𝑇𝑅𝐸 ) ) → ( +g ‘ ( Scalar ‘ 𝑈 ) ) = + )
12 11 oveqd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝑄𝐸 ) ∧ ( 𝐺𝑇𝑅𝐸 ) ) → ( 𝑄 ( +g ‘ ( Scalar ‘ 𝑈 ) ) 𝑅 ) = ( 𝑄 + 𝑅 ) )
13 12 opeq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝑄𝐸 ) ∧ ( 𝐺𝑇𝑅𝐸 ) ) → ⟨ ( 𝐹𝐺 ) , ( 𝑄 ( +g ‘ ( Scalar ‘ 𝑈 ) ) 𝑅 ) ⟩ = ⟨ ( 𝐹𝐺 ) , ( 𝑄 + 𝑅 ) ⟩ )
14 9 13 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝑄𝐸 ) ∧ ( 𝐺𝑇𝑅𝐸 ) ) → ( ⟨ 𝐹 , 𝑄𝐺 , 𝑅 ⟩ ) = ⟨ ( 𝐹𝐺 ) , ( 𝑄 + 𝑅 ) ⟩ )