Step |
Hyp |
Ref |
Expression |
1 |
|
dvhopvadd2.h |
|- H = ( LHyp ` K ) |
2 |
|
dvhopvadd2.t |
|- T = ( ( LTrn ` K ) ` W ) |
3 |
|
dvhopvadd2.e |
|- E = ( ( TEndo ` K ) ` W ) |
4 |
|
dvhopvadd2.p |
|- .+ = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) ) |
5 |
|
dvhopvadd2.u |
|- U = ( ( DVecH ` K ) ` W ) |
6 |
|
dvhopvadd2.s |
|- .+b = ( +g ` U ) |
7 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
8 |
|
eqid |
|- ( +g ` ( Scalar ` U ) ) = ( +g ` ( Scalar ` U ) ) |
9 |
1 2 3 5 7 6 8
|
dvhopvadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> ( <. F , Q >. .+b <. G , R >. ) = <. ( F o. G ) , ( Q ( +g ` ( Scalar ` U ) ) R ) >. ) |
10 |
1 2 3 5 7 4 8
|
dvhfplusr |
|- ( ( K e. HL /\ W e. H ) -> ( +g ` ( Scalar ` U ) ) = .+ ) |
11 |
10
|
3ad2ant1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> ( +g ` ( Scalar ` U ) ) = .+ ) |
12 |
11
|
oveqd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> ( Q ( +g ` ( Scalar ` U ) ) R ) = ( Q .+ R ) ) |
13 |
12
|
opeq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> <. ( F o. G ) , ( Q ( +g ` ( Scalar ` U ) ) R ) >. = <. ( F o. G ) , ( Q .+ R ) >. ) |
14 |
9 13
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> ( <. F , Q >. .+b <. G , R >. ) = <. ( F o. G ) , ( Q .+ R ) >. ) |