Metamath Proof Explorer


Theorem dvhopvadd2

Description: The vector sum operation for the constructed full vector space H. TODO: check if this will shorten proofs that use dvhopvadd and/or dvhfplusr . (Contributed by NM, 26-Sep-2014)

Ref Expression
Hypotheses dvhopvadd2.h
|- H = ( LHyp ` K )
dvhopvadd2.t
|- T = ( ( LTrn ` K ) ` W )
dvhopvadd2.e
|- E = ( ( TEndo ` K ) ` W )
dvhopvadd2.p
|- .+ = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) )
dvhopvadd2.u
|- U = ( ( DVecH ` K ) ` W )
dvhopvadd2.s
|- .+b = ( +g ` U )
Assertion dvhopvadd2
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> ( <. F , Q >. .+b <. G , R >. ) = <. ( F o. G ) , ( Q .+ R ) >. )

Proof

Step Hyp Ref Expression
1 dvhopvadd2.h
 |-  H = ( LHyp ` K )
2 dvhopvadd2.t
 |-  T = ( ( LTrn ` K ) ` W )
3 dvhopvadd2.e
 |-  E = ( ( TEndo ` K ) ` W )
4 dvhopvadd2.p
 |-  .+ = ( s e. E , t e. E |-> ( f e. T |-> ( ( s ` f ) o. ( t ` f ) ) ) )
5 dvhopvadd2.u
 |-  U = ( ( DVecH ` K ) ` W )
6 dvhopvadd2.s
 |-  .+b = ( +g ` U )
7 eqid
 |-  ( Scalar ` U ) = ( Scalar ` U )
8 eqid
 |-  ( +g ` ( Scalar ` U ) ) = ( +g ` ( Scalar ` U ) )
9 1 2 3 5 7 6 8 dvhopvadd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> ( <. F , Q >. .+b <. G , R >. ) = <. ( F o. G ) , ( Q ( +g ` ( Scalar ` U ) ) R ) >. )
10 1 2 3 5 7 4 8 dvhfplusr
 |-  ( ( K e. HL /\ W e. H ) -> ( +g ` ( Scalar ` U ) ) = .+ )
11 10 3ad2ant1
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> ( +g ` ( Scalar ` U ) ) = .+ )
12 11 oveqd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> ( Q ( +g ` ( Scalar ` U ) ) R ) = ( Q .+ R ) )
13 12 opeq2d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> <. ( F o. G ) , ( Q ( +g ` ( Scalar ` U ) ) R ) >. = <. ( F o. G ) , ( Q .+ R ) >. )
14 9 13 eqtrd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ Q e. E ) /\ ( G e. T /\ R e. E ) ) -> ( <. F , Q >. .+b <. G , R >. ) = <. ( F o. G ) , ( Q .+ R ) >. )