Step |
Hyp |
Ref |
Expression |
1 |
|
dvhvadd.h |
|- H = ( LHyp ` K ) |
2 |
|
dvhvadd.t |
|- T = ( ( LTrn ` K ) ` W ) |
3 |
|
dvhvadd.e |
|- E = ( ( TEndo ` K ) ` W ) |
4 |
|
dvhvadd.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
dvhvadd.f |
|- D = ( Scalar ` U ) |
6 |
|
dvhvadd.s |
|- .+ = ( +g ` U ) |
7 |
|
dvhvadd.p |
|- .+^ = ( +g ` D ) |
8 |
|
eqid |
|- ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( ( 2nd ` f ) .+^ ( 2nd ` g ) ) >. ) = ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( ( 2nd ` f ) .+^ ( 2nd ` g ) ) >. ) |
9 |
1 2 3 4 5 7 8 6
|
dvhfvadd |
|- ( ( K e. HL /\ W e. H ) -> .+ = ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( ( 2nd ` f ) .+^ ( 2nd ` g ) ) >. ) ) |
10 |
9
|
oveqd |
|- ( ( K e. HL /\ W e. H ) -> ( F .+ G ) = ( F ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( ( 2nd ` f ) .+^ ( 2nd ` g ) ) >. ) G ) ) |
11 |
8
|
dvhvaddval |
|- ( ( F e. ( T X. E ) /\ G e. ( T X. E ) ) -> ( F ( f e. ( T X. E ) , g e. ( T X. E ) |-> <. ( ( 1st ` f ) o. ( 1st ` g ) ) , ( ( 2nd ` f ) .+^ ( 2nd ` g ) ) >. ) G ) = <. ( ( 1st ` F ) o. ( 1st ` G ) ) , ( ( 2nd ` F ) .+^ ( 2nd ` G ) ) >. ) |
12 |
10 11
|
sylan9eq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. ( T X. E ) /\ G e. ( T X. E ) ) ) -> ( F .+ G ) = <. ( ( 1st ` F ) o. ( 1st ` G ) ) , ( ( 2nd ` F ) .+^ ( 2nd ` G ) ) >. ) |