Metamath Proof Explorer


Theorem dvhvadd

Description: The vector sum operation for the constructed full vector space H. (Contributed by NM, 11-Feb-2014) (Revised by Mario Carneiro, 23-Jun-2014)

Ref Expression
Hypotheses dvhvadd.h 𝐻 = ( LHyp ‘ 𝐾 )
dvhvadd.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dvhvadd.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
dvhvadd.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
dvhvadd.f 𝐷 = ( Scalar ‘ 𝑈 )
dvhvadd.s + = ( +g𝑈 )
dvhvadd.p = ( +g𝐷 )
Assertion dvhvadd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝐹 + 𝐺 ) = ⟨ ( ( 1st𝐹 ) ∘ ( 1st𝐺 ) ) , ( ( 2nd𝐹 ) ( 2nd𝐺 ) ) ⟩ )

Proof

Step Hyp Ref Expression
1 dvhvadd.h 𝐻 = ( LHyp ‘ 𝐾 )
2 dvhvadd.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 dvhvadd.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
4 dvhvadd.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
5 dvhvadd.f 𝐷 = ( Scalar ‘ 𝑈 )
6 dvhvadd.s + = ( +g𝑈 )
7 dvhvadd.p = ( +g𝐷 )
8 eqid ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ( 2nd𝑓 ) ( 2nd𝑔 ) ) ⟩ ) = ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ( 2nd𝑓 ) ( 2nd𝑔 ) ) ⟩ )
9 1 2 3 4 5 7 8 6 dvhfvadd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → + = ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ( 2nd𝑓 ) ( 2nd𝑔 ) ) ⟩ ) )
10 9 oveqd ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝐹 + 𝐺 ) = ( 𝐹 ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ( 2nd𝑓 ) ( 2nd𝑔 ) ) ⟩ ) 𝐺 ) )
11 8 dvhvaddval ( ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ) → ( 𝐹 ( 𝑓 ∈ ( 𝑇 × 𝐸 ) , 𝑔 ∈ ( 𝑇 × 𝐸 ) ↦ ⟨ ( ( 1st𝑓 ) ∘ ( 1st𝑔 ) ) , ( ( 2nd𝑓 ) ( 2nd𝑔 ) ) ⟩ ) 𝐺 ) = ⟨ ( ( 1st𝐹 ) ∘ ( 1st𝐺 ) ) , ( ( 2nd𝐹 ) ( 2nd𝐺 ) ) ⟩ )
12 10 11 sylan9eq ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹 ∈ ( 𝑇 × 𝐸 ) ∧ 𝐺 ∈ ( 𝑇 × 𝐸 ) ) ) → ( 𝐹 + 𝐺 ) = ⟨ ( ( 1st𝐹 ) ∘ ( 1st𝐺 ) ) , ( ( 2nd𝐹 ) ( 2nd𝐺 ) ) ⟩ )