Step |
Hyp |
Ref |
Expression |
1 |
|
dvheveccl.h |
|- H = ( LHyp ` K ) |
2 |
|
dvheveccl.b |
|- B = ( Base ` K ) |
3 |
|
dvheveccl.t |
|- T = ( ( LTrn ` K ) ` W ) |
4 |
|
dvheveccl.u |
|- U = ( ( DVecH ` K ) ` W ) |
5 |
|
dvheveccl.v |
|- V = ( Base ` U ) |
6 |
|
dvheveccl.z |
|- .0. = ( 0g ` U ) |
7 |
|
dvheveccl.e |
|- E = <. ( _I |` B ) , ( _I |` T ) >. |
8 |
|
dvheveccl.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
2 1 3
|
idltrn |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` B ) e. T ) |
10 |
8 9
|
syl |
|- ( ph -> ( _I |` B ) e. T ) |
11 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
12 |
1 3 11
|
tendoidcl |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` T ) e. ( ( TEndo ` K ) ` W ) ) |
13 |
8 12
|
syl |
|- ( ph -> ( _I |` T ) e. ( ( TEndo ` K ) ` W ) ) |
14 |
1 3 11 4 5
|
dvhelvbasei |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( _I |` B ) e. T /\ ( _I |` T ) e. ( ( TEndo ` K ) ` W ) ) ) -> <. ( _I |` B ) , ( _I |` T ) >. e. V ) |
15 |
8 10 13 14
|
syl12anc |
|- ( ph -> <. ( _I |` B ) , ( _I |` T ) >. e. V ) |
16 |
|
eqid |
|- ( f e. T |-> ( _I |` B ) ) = ( f e. T |-> ( _I |` B ) ) |
17 |
2 1 3 11 16
|
tendo1ne0 |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` T ) =/= ( f e. T |-> ( _I |` B ) ) ) |
18 |
8 17
|
syl |
|- ( ph -> ( _I |` T ) =/= ( f e. T |-> ( _I |` B ) ) ) |
19 |
2 1 3 4 6 16
|
dvh0g |
|- ( ( K e. HL /\ W e. H ) -> .0. = <. ( _I |` B ) , ( f e. T |-> ( _I |` B ) ) >. ) |
20 |
8 19
|
syl |
|- ( ph -> .0. = <. ( _I |` B ) , ( f e. T |-> ( _I |` B ) ) >. ) |
21 |
|
eqtr |
|- ( ( <. ( _I |` B ) , ( _I |` T ) >. = .0. /\ .0. = <. ( _I |` B ) , ( f e. T |-> ( _I |` B ) ) >. ) -> <. ( _I |` B ) , ( _I |` T ) >. = <. ( _I |` B ) , ( f e. T |-> ( _I |` B ) ) >. ) |
22 |
|
opthg |
|- ( ( ( _I |` B ) e. T /\ ( _I |` T ) e. ( ( TEndo ` K ) ` W ) ) -> ( <. ( _I |` B ) , ( _I |` T ) >. = <. ( _I |` B ) , ( f e. T |-> ( _I |` B ) ) >. <-> ( ( _I |` B ) = ( _I |` B ) /\ ( _I |` T ) = ( f e. T |-> ( _I |` B ) ) ) ) ) |
23 |
10 13 22
|
syl2anc |
|- ( ph -> ( <. ( _I |` B ) , ( _I |` T ) >. = <. ( _I |` B ) , ( f e. T |-> ( _I |` B ) ) >. <-> ( ( _I |` B ) = ( _I |` B ) /\ ( _I |` T ) = ( f e. T |-> ( _I |` B ) ) ) ) ) |
24 |
|
simpr |
|- ( ( ( _I |` B ) = ( _I |` B ) /\ ( _I |` T ) = ( f e. T |-> ( _I |` B ) ) ) -> ( _I |` T ) = ( f e. T |-> ( _I |` B ) ) ) |
25 |
23 24
|
syl6bi |
|- ( ph -> ( <. ( _I |` B ) , ( _I |` T ) >. = <. ( _I |` B ) , ( f e. T |-> ( _I |` B ) ) >. -> ( _I |` T ) = ( f e. T |-> ( _I |` B ) ) ) ) |
26 |
21 25
|
syl5 |
|- ( ph -> ( ( <. ( _I |` B ) , ( _I |` T ) >. = .0. /\ .0. = <. ( _I |` B ) , ( f e. T |-> ( _I |` B ) ) >. ) -> ( _I |` T ) = ( f e. T |-> ( _I |` B ) ) ) ) |
27 |
20 26
|
mpan2d |
|- ( ph -> ( <. ( _I |` B ) , ( _I |` T ) >. = .0. -> ( _I |` T ) = ( f e. T |-> ( _I |` B ) ) ) ) |
28 |
27
|
necon3d |
|- ( ph -> ( ( _I |` T ) =/= ( f e. T |-> ( _I |` B ) ) -> <. ( _I |` B ) , ( _I |` T ) >. =/= .0. ) ) |
29 |
18 28
|
mpd |
|- ( ph -> <. ( _I |` B ) , ( _I |` T ) >. =/= .0. ) |
30 |
|
eldifsn |
|- ( <. ( _I |` B ) , ( _I |` T ) >. e. ( V \ { .0. } ) <-> ( <. ( _I |` B ) , ( _I |` T ) >. e. V /\ <. ( _I |` B ) , ( _I |` T ) >. =/= .0. ) ) |
31 |
15 29 30
|
sylanbrc |
|- ( ph -> <. ( _I |` B ) , ( _I |` T ) >. e. ( V \ { .0. } ) ) |
32 |
7 31
|
eqeltrid |
|- ( ph -> E e. ( V \ { .0. } ) ) |