| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihp.b |
|- B = ( Base ` K ) |
| 2 |
|
dihp.h |
|- H = ( LHyp ` K ) |
| 3 |
|
dihp.p |
|- P = ( ( oc ` K ) ` W ) |
| 4 |
|
dihp.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 5 |
|
dihp.e |
|- E = ( ( TEndo ` K ) ` W ) |
| 6 |
|
dihp.o |
|- O = ( f e. T |-> ( _I |` B ) ) |
| 7 |
|
dihp.i |
|- I = ( ( DIsoH ` K ) ` W ) |
| 8 |
|
dihp.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 9 |
|
dihp.n |
|- N = ( LSpan ` U ) |
| 10 |
|
dihp.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 11 |
|
dihp.s |
|- ( ph -> ( S e. E /\ S =/= O ) ) |
| 12 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
| 13 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
| 14 |
2 8 10
|
dvhlvec |
|- ( ph -> U e. LVec ) |
| 15 |
2 3 7 8 13 10
|
dihat |
|- ( ph -> ( I ` P ) e. ( LSAtoms ` U ) ) |
| 16 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 17 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
| 18 |
16 17 2 3
|
lhpocnel2 |
|- ( ( K e. HL /\ W e. H ) -> ( P e. ( Atoms ` K ) /\ -. P ( le ` K ) W ) ) |
| 19 |
|
eqid |
|- ( iota_ f e. T ( f ` P ) = P ) = ( iota_ f e. T ( f ` P ) = P ) |
| 20 |
1 16 17 2 4 19
|
ltrniotaidvalN |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. ( Atoms ` K ) /\ -. P ( le ` K ) W ) ) -> ( iota_ f e. T ( f ` P ) = P ) = ( _I |` B ) ) |
| 21 |
10 18 20
|
syl2anc2 |
|- ( ph -> ( iota_ f e. T ( f ` P ) = P ) = ( _I |` B ) ) |
| 22 |
21
|
fveq2d |
|- ( ph -> ( S ` ( iota_ f e. T ( f ` P ) = P ) ) = ( S ` ( _I |` B ) ) ) |
| 23 |
11
|
simpld |
|- ( ph -> S e. E ) |
| 24 |
1 2 5
|
tendoid |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. E ) -> ( S ` ( _I |` B ) ) = ( _I |` B ) ) |
| 25 |
10 23 24
|
syl2anc |
|- ( ph -> ( S ` ( _I |` B ) ) = ( _I |` B ) ) |
| 26 |
22 25
|
eqtr2d |
|- ( ph -> ( _I |` B ) = ( S ` ( iota_ f e. T ( f ` P ) = P ) ) ) |
| 27 |
1
|
fvexi |
|- B e. _V |
| 28 |
|
resiexg |
|- ( B e. _V -> ( _I |` B ) e. _V ) |
| 29 |
27 28
|
mp1i |
|- ( ph -> ( _I |` B ) e. _V ) |
| 30 |
|
eqeq1 |
|- ( g = ( _I |` B ) -> ( g = ( s ` ( iota_ f e. T ( f ` P ) = P ) ) <-> ( _I |` B ) = ( s ` ( iota_ f e. T ( f ` P ) = P ) ) ) ) |
| 31 |
30
|
anbi1d |
|- ( g = ( _I |` B ) -> ( ( g = ( s ` ( iota_ f e. T ( f ` P ) = P ) ) /\ s e. E ) <-> ( ( _I |` B ) = ( s ` ( iota_ f e. T ( f ` P ) = P ) ) /\ s e. E ) ) ) |
| 32 |
|
fveq1 |
|- ( s = S -> ( s ` ( iota_ f e. T ( f ` P ) = P ) ) = ( S ` ( iota_ f e. T ( f ` P ) = P ) ) ) |
| 33 |
32
|
eqeq2d |
|- ( s = S -> ( ( _I |` B ) = ( s ` ( iota_ f e. T ( f ` P ) = P ) ) <-> ( _I |` B ) = ( S ` ( iota_ f e. T ( f ` P ) = P ) ) ) ) |
| 34 |
|
eleq1 |
|- ( s = S -> ( s e. E <-> S e. E ) ) |
| 35 |
33 34
|
anbi12d |
|- ( s = S -> ( ( ( _I |` B ) = ( s ` ( iota_ f e. T ( f ` P ) = P ) ) /\ s e. E ) <-> ( ( _I |` B ) = ( S ` ( iota_ f e. T ( f ` P ) = P ) ) /\ S e. E ) ) ) |
| 36 |
31 35
|
opelopabg |
|- ( ( ( _I |` B ) e. _V /\ S e. E ) -> ( <. ( _I |` B ) , S >. e. { <. g , s >. | ( g = ( s ` ( iota_ f e. T ( f ` P ) = P ) ) /\ s e. E ) } <-> ( ( _I |` B ) = ( S ` ( iota_ f e. T ( f ` P ) = P ) ) /\ S e. E ) ) ) |
| 37 |
29 23 36
|
syl2anc |
|- ( ph -> ( <. ( _I |` B ) , S >. e. { <. g , s >. | ( g = ( s ` ( iota_ f e. T ( f ` P ) = P ) ) /\ s e. E ) } <-> ( ( _I |` B ) = ( S ` ( iota_ f e. T ( f ` P ) = P ) ) /\ S e. E ) ) ) |
| 38 |
26 23 37
|
mpbir2and |
|- ( ph -> <. ( _I |` B ) , S >. e. { <. g , s >. | ( g = ( s ` ( iota_ f e. T ( f ` P ) = P ) ) /\ s e. E ) } ) |
| 39 |
|
eqid |
|- ( ( DIsoC ` K ) ` W ) = ( ( DIsoC ` K ) ` W ) |
| 40 |
16 17 2 39 7
|
dihvalcqat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. ( Atoms ` K ) /\ -. P ( le ` K ) W ) ) -> ( I ` P ) = ( ( ( DIsoC ` K ) ` W ) ` P ) ) |
| 41 |
10 18 40
|
syl2anc2 |
|- ( ph -> ( I ` P ) = ( ( ( DIsoC ` K ) ` W ) ` P ) ) |
| 42 |
16 17 2 3 4 5 39
|
dicval |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. ( Atoms ` K ) /\ -. P ( le ` K ) W ) ) -> ( ( ( DIsoC ` K ) ` W ) ` P ) = { <. g , s >. | ( g = ( s ` ( iota_ f e. T ( f ` P ) = P ) ) /\ s e. E ) } ) |
| 43 |
10 18 42
|
syl2anc2 |
|- ( ph -> ( ( ( DIsoC ` K ) ` W ) ` P ) = { <. g , s >. | ( g = ( s ` ( iota_ f e. T ( f ` P ) = P ) ) /\ s e. E ) } ) |
| 44 |
41 43
|
eqtr2d |
|- ( ph -> { <. g , s >. | ( g = ( s ` ( iota_ f e. T ( f ` P ) = P ) ) /\ s e. E ) } = ( I ` P ) ) |
| 45 |
38 44
|
eleqtrd |
|- ( ph -> <. ( _I |` B ) , S >. e. ( I ` P ) ) |
| 46 |
11
|
simprd |
|- ( ph -> S =/= O ) |
| 47 |
1 2 4 8 12 6
|
dvh0g |
|- ( ( K e. HL /\ W e. H ) -> ( 0g ` U ) = <. ( _I |` B ) , O >. ) |
| 48 |
10 47
|
syl |
|- ( ph -> ( 0g ` U ) = <. ( _I |` B ) , O >. ) |
| 49 |
48
|
eqeq2d |
|- ( ph -> ( <. ( _I |` B ) , S >. = ( 0g ` U ) <-> <. ( _I |` B ) , S >. = <. ( _I |` B ) , O >. ) ) |
| 50 |
27 28
|
ax-mp |
|- ( _I |` B ) e. _V |
| 51 |
4
|
fvexi |
|- T e. _V |
| 52 |
51
|
mptex |
|- ( f e. T |-> ( _I |` B ) ) e. _V |
| 53 |
6 52
|
eqeltri |
|- O e. _V |
| 54 |
50 53
|
opth2 |
|- ( <. ( _I |` B ) , S >. = <. ( _I |` B ) , O >. <-> ( ( _I |` B ) = ( _I |` B ) /\ S = O ) ) |
| 55 |
54
|
simprbi |
|- ( <. ( _I |` B ) , S >. = <. ( _I |` B ) , O >. -> S = O ) |
| 56 |
49 55
|
biimtrdi |
|- ( ph -> ( <. ( _I |` B ) , S >. = ( 0g ` U ) -> S = O ) ) |
| 57 |
56
|
necon3d |
|- ( ph -> ( S =/= O -> <. ( _I |` B ) , S >. =/= ( 0g ` U ) ) ) |
| 58 |
46 57
|
mpd |
|- ( ph -> <. ( _I |` B ) , S >. =/= ( 0g ` U ) ) |
| 59 |
12 9 13 14 15 45 58
|
lsatel |
|- ( ph -> ( I ` P ) = ( N ` { <. ( _I |` B ) , S >. } ) ) |