Step |
Hyp |
Ref |
Expression |
1 |
|
dihvalcqat.l |
|- .<_ = ( le ` K ) |
2 |
|
dihvalcqat.a |
|- A = ( Atoms ` K ) |
3 |
|
dihvalcqat.h |
|- H = ( LHyp ` K ) |
4 |
|
dihvalcqat.j |
|- J = ( ( DIsoC ` K ) ` W ) |
5 |
|
dihvalcqat.i |
|- I = ( ( DIsoH ` K ) ` W ) |
6 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
7 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
8 |
7 2
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
9 |
8
|
ad2antrl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> Q e. ( Base ` K ) ) |
10 |
|
simprr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> -. Q .<_ W ) |
11 |
|
simpr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
12 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
13 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
14 |
1 12 13 2 3
|
lhpmat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Q ( meet ` K ) W ) = ( 0. ` K ) ) |
15 |
14
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Q ( join ` K ) ( Q ( meet ` K ) W ) ) = ( Q ( join ` K ) ( 0. ` K ) ) ) |
16 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
17 |
16
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> K e. OL ) |
18 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
19 |
7 18 13
|
olj01 |
|- ( ( K e. OL /\ Q e. ( Base ` K ) ) -> ( Q ( join ` K ) ( 0. ` K ) ) = Q ) |
20 |
17 9 19
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Q ( join ` K ) ( 0. ` K ) ) = Q ) |
21 |
15 20
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Q ( join ` K ) ( Q ( meet ` K ) W ) ) = Q ) |
22 |
|
eqid |
|- ( ( DIsoB ` K ) ` W ) = ( ( DIsoB ` K ) ` W ) |
23 |
|
eqid |
|- ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W ) |
24 |
|
eqid |
|- ( LSSum ` ( ( DVecH ` K ) ` W ) ) = ( LSSum ` ( ( DVecH ` K ) ` W ) ) |
25 |
7 1 18 12 2 3 5 22 4 23 24
|
dihvalcq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. ( Base ` K ) /\ -. Q .<_ W ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( Q ( join ` K ) ( Q ( meet ` K ) W ) ) = Q ) ) -> ( I ` Q ) = ( ( J ` Q ) ( LSSum ` ( ( DVecH ` K ) ` W ) ) ( ( ( DIsoB ` K ) ` W ) ` ( Q ( meet ` K ) W ) ) ) ) |
26 |
6 9 10 11 21 25
|
syl122anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = ( ( J ` Q ) ( LSSum ` ( ( DVecH ` K ) ` W ) ) ( ( ( DIsoB ` K ) ` W ) ` ( Q ( meet ` K ) W ) ) ) ) |
27 |
14
|
fveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( ( DIsoB ` K ) ` W ) ` ( Q ( meet ` K ) W ) ) = ( ( ( DIsoB ` K ) ` W ) ` ( 0. ` K ) ) ) |
28 |
|
eqid |
|- ( 0g ` ( ( DVecH ` K ) ` W ) ) = ( 0g ` ( ( DVecH ` K ) ` W ) ) |
29 |
13 3 22 23 28
|
dib0 |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( DIsoB ` K ) ` W ) ` ( 0. ` K ) ) = { ( 0g ` ( ( DVecH ` K ) ` W ) ) } ) |
30 |
29
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( ( DIsoB ` K ) ` W ) ` ( 0. ` K ) ) = { ( 0g ` ( ( DVecH ` K ) ` W ) ) } ) |
31 |
27 30
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( ( DIsoB ` K ) ` W ) ` ( Q ( meet ` K ) W ) ) = { ( 0g ` ( ( DVecH ` K ) ` W ) ) } ) |
32 |
31
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( J ` Q ) ( LSSum ` ( ( DVecH ` K ) ` W ) ) ( ( ( DIsoB ` K ) ` W ) ` ( Q ( meet ` K ) W ) ) ) = ( ( J ` Q ) ( LSSum ` ( ( DVecH ` K ) ` W ) ) { ( 0g ` ( ( DVecH ` K ) ` W ) ) } ) ) |
33 |
3 23 6
|
dvhlmod |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( DVecH ` K ) ` W ) e. LMod ) |
34 |
|
eqid |
|- ( LSubSp ` ( ( DVecH ` K ) ` W ) ) = ( LSubSp ` ( ( DVecH ` K ) ` W ) ) |
35 |
1 2 3 23 4 34
|
diclss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( J ` Q ) e. ( LSubSp ` ( ( DVecH ` K ) ` W ) ) ) |
36 |
34
|
lsssubg |
|- ( ( ( ( DVecH ` K ) ` W ) e. LMod /\ ( J ` Q ) e. ( LSubSp ` ( ( DVecH ` K ) ` W ) ) ) -> ( J ` Q ) e. ( SubGrp ` ( ( DVecH ` K ) ` W ) ) ) |
37 |
33 35 36
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( J ` Q ) e. ( SubGrp ` ( ( DVecH ` K ) ` W ) ) ) |
38 |
28 24
|
lsm01 |
|- ( ( J ` Q ) e. ( SubGrp ` ( ( DVecH ` K ) ` W ) ) -> ( ( J ` Q ) ( LSSum ` ( ( DVecH ` K ) ` W ) ) { ( 0g ` ( ( DVecH ` K ) ` W ) ) } ) = ( J ` Q ) ) |
39 |
37 38
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( J ` Q ) ( LSSum ` ( ( DVecH ` K ) ` W ) ) { ( 0g ` ( ( DVecH ` K ) ` W ) ) } ) = ( J ` Q ) ) |
40 |
32 39
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( J ` Q ) ( LSSum ` ( ( DVecH ` K ) ` W ) ) ( ( ( DIsoB ` K ) ` W ) ` ( Q ( meet ` K ) W ) ) ) = ( J ` Q ) ) |
41 |
26 40
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = ( J ` Q ) ) |