| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dib0.z |
|- .0. = ( 0. ` K ) |
| 2 |
|
dib0.h |
|- H = ( LHyp ` K ) |
| 3 |
|
dib0.i |
|- I = ( ( DIsoB ` K ) ` W ) |
| 4 |
|
dib0.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 5 |
|
dib0.o |
|- O = ( 0g ` U ) |
| 6 |
|
fvex |
|- ( Base ` K ) e. _V |
| 7 |
|
resiexg |
|- ( ( Base ` K ) e. _V -> ( _I |` ( Base ` K ) ) e. _V ) |
| 8 |
6 7
|
ax-mp |
|- ( _I |` ( Base ` K ) ) e. _V |
| 9 |
|
fvex |
|- ( ( LTrn ` K ) ` W ) e. _V |
| 10 |
9
|
mptex |
|- ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) e. _V |
| 11 |
8 10
|
xpsn |
|- ( { ( _I |` ( Base ` K ) ) } X. { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) } ) = { <. ( _I |` ( Base ` K ) ) , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) >. } |
| 12 |
|
id |
|- ( ( K e. HL /\ W e. H ) -> ( K e. HL /\ W e. H ) ) |
| 13 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
| 14 |
13
|
adantr |
|- ( ( K e. HL /\ W e. H ) -> K e. OP ) |
| 15 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 16 |
15 1
|
op0cl |
|- ( K e. OP -> .0. e. ( Base ` K ) ) |
| 17 |
14 16
|
syl |
|- ( ( K e. HL /\ W e. H ) -> .0. e. ( Base ` K ) ) |
| 18 |
15 2
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 19 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 20 |
15 19 1
|
op0le |
|- ( ( K e. OP /\ W e. ( Base ` K ) ) -> .0. ( le ` K ) W ) |
| 21 |
13 18 20
|
syl2an |
|- ( ( K e. HL /\ W e. H ) -> .0. ( le ` K ) W ) |
| 22 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
| 23 |
|
eqid |
|- ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) = ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) |
| 24 |
|
eqid |
|- ( ( DIsoA ` K ) ` W ) = ( ( DIsoA ` K ) ` W ) |
| 25 |
15 19 2 22 23 24 3
|
dibval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( .0. e. ( Base ` K ) /\ .0. ( le ` K ) W ) ) -> ( I ` .0. ) = ( ( ( ( DIsoA ` K ) ` W ) ` .0. ) X. { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) } ) ) |
| 26 |
12 17 21 25
|
syl12anc |
|- ( ( K e. HL /\ W e. H ) -> ( I ` .0. ) = ( ( ( ( DIsoA ` K ) ` W ) ` .0. ) X. { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) } ) ) |
| 27 |
15 1 2 24
|
dia0 |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( DIsoA ` K ) ` W ) ` .0. ) = { ( _I |` ( Base ` K ) ) } ) |
| 28 |
27
|
xpeq1d |
|- ( ( K e. HL /\ W e. H ) -> ( ( ( ( DIsoA ` K ) ` W ) ` .0. ) X. { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) } ) = ( { ( _I |` ( Base ` K ) ) } X. { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) } ) ) |
| 29 |
26 28
|
eqtrd |
|- ( ( K e. HL /\ W e. H ) -> ( I ` .0. ) = ( { ( _I |` ( Base ` K ) ) } X. { ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) } ) ) |
| 30 |
15 2 22 4 5 23
|
dvh0g |
|- ( ( K e. HL /\ W e. H ) -> O = <. ( _I |` ( Base ` K ) ) , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) >. ) |
| 31 |
30
|
sneqd |
|- ( ( K e. HL /\ W e. H ) -> { O } = { <. ( _I |` ( Base ` K ) ) , ( f e. ( ( LTrn ` K ) ` W ) |-> ( _I |` ( Base ` K ) ) ) >. } ) |
| 32 |
11 29 31
|
3eqtr4a |
|- ( ( K e. HL /\ W e. H ) -> ( I ` .0. ) = { O } ) |