Step |
Hyp |
Ref |
Expression |
1 |
|
dibval2.b |
|- B = ( Base ` K ) |
2 |
|
dibval2.l |
|- .<_ = ( le ` K ) |
3 |
|
dibval2.h |
|- H = ( LHyp ` K ) |
4 |
|
dibval2.t |
|- T = ( ( LTrn ` K ) ` W ) |
5 |
|
dibval2.o |
|- .0. = ( f e. T |-> ( _I |` B ) ) |
6 |
|
dibval2.j |
|- J = ( ( DIsoA ` K ) ` W ) |
7 |
|
dibval2.i |
|- I = ( ( DIsoB ` K ) ` W ) |
8 |
1 2 3 6
|
diaeldm |
|- ( ( K e. V /\ W e. H ) -> ( X e. dom J <-> ( X e. B /\ X .<_ W ) ) ) |
9 |
8
|
biimpar |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> X e. dom J ) |
10 |
1 3 4 5 6 7
|
dibval |
|- ( ( ( K e. V /\ W e. H ) /\ X e. dom J ) -> ( I ` X ) = ( ( J ` X ) X. { .0. } ) ) |
11 |
9 10
|
syldan |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) = ( ( J ` X ) X. { .0. } ) ) |